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CHAPTER 1 - INTRODUCTION 

Intelligent Transportation Systems (ITS) involve the use of information, 

communications, and computer technology to update and enhance the capabilities of 

transportation systems (7, p. 3). Incorporating advanced technology into traditional 

transportation systems provides completely new functions to facilitate more productive and 

safe transportation of people and goods. Thus, ITS provides a new paradigm for plaiming, 

managing, operating, and maintaining transportation systems. The subject of this dissertation 

is to evaluate a new ITS concept for enhancing traffic signal control. The ultimate 

deployment of the concept is dependent on future incorporation of advanced technology into 

traffic control and vehicle systems. 

The general emphasis of the United States ITS program, and programs throughout the 

world, is to promote safe and productive transportation systems that complement a 

multimodal environment through the application of technology (2, p. 1). Further, ITS is 

intended to promote the integration of transportation components into an integrated system. 

For example, vehicles, the roadway, and traffic control devices shbuld be integrated to work 

as complementary components of a seamless system. This dissertation focuses on one aspect 

of the integration of vehicle and traffic control systems. It examines improved traffic signal 

control capabilities, which are supported by communication between the vehicle and traffic 

signal control, thus more highly integrating the operation of the vehicle and traffic signal 

control. 
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Technology allows the identification of specific vehicles and their location in the 

traffic stream, and information related to their performance can either be inferred from 

vehicle specific information or communicated directly from the vehicle to the roadside. For 

example, vehicles equipped with radio frequency transponders could communicate a variety 

of information to the roadside, including location, speed, classification of the vehicle, vehicle 

acceleration and deceleration performance, vehicle mechanical condition, and even whether 

the driver of the vehicle intends to turn right or left or travel through the next intersection. 

Further, other technologies are able to automatically gather the same or similar vehicle data. 

For example, current image processing technology can locate and classify vehicles. Current 

traffic signal systems and traffic control logic are, however, based only on the detection of 

the vehicle in the area of the signal and have previously not take into account in their control 

logic this higher order vehicle specific information provided by Automatic Vehicle Specific 

Identification (AVSI). 

AVSI is a generic name for advanced vehicle detection systems. By automating the 

identification of vehicles by sensing the presence of vehicles with roadside detection sites or 

readers, AVSI is assumed to provide types and arrival times of the approaching vehicles to a 

local microprocessor-based traffic signal controller. 

The fundamental question researched is whether there are benefits to making traffic 

signal control timing decisions (e.g., phase and cycle length, and green extension) based on 

vehicle specific information. If there are benefits to enhancing traffic control logic to take 

into account vehicle specific information, this research develops a measure of effectiveness to 



www.manaraa.com

3 

evaluate these enhanced capabilities. However, before the fundamental research question 

(what are the benefits of vehicle specific information) can be addressed, it is necessary to 

create traffic control logic to effectively apply AVSI to traffic signal control. 

Because traffic signal control systems do not exist which take into account vehicle 

specific information and include Vehicle Specific Adaptive (VSA) control logic, a computer 

simulation is employed to obtain measures of effectiveness for such a system. Available 

traffic signal control and traffic computer simulations include existing control strategies and 

incorporate existing vehicle detection technology into underlying traffic control logic. 

Therefore, no known and available simulation model provides a viable testbed for the 

evaluation of AVSI in traffic signal control systems and thus one is constructed to achieve 

the research objectives. 

1.1 Research Overview 

The purpose of the simulation model is to provide a testbed to evaluate the merit of 

signal control supported by AVSI. It is intended to be a research tool and not a tool for 

conducting the design of traffic signal timing plans. An important and unique part of the 

simulation model developed is the VSA traffic signal control logic incorporated within the 

model. Implicit to the research is the assumption that the VSA control logic design is 

efficient. Future and more efficient control logic may result in superior performance. 

The research tests the use of AVSI through the use of a relatively simple traffic 

control environment. The case study modeled in the simulation is a signalized isolated 

intersection with four phases. The simulation developed is a microscopic simulation (treating 
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each vehicle as a unique entity) and assumes that headways between vehicles remain static 

throughout the simulation. The simulation periodically modifies the timing cycle splits 

between phases based on upstream traffic flow characteristics. At the end of each phase, the 

simulation determines whether to extend the green time based on a heuristic decision-making 

process. Although the heuristic is complex, in conceptual terms it compares the likely 

reduction in delay caused by extending the green and not stopping the approaching slow 

accelerating vehicle (e.g., trucks) versus the delay caused by reducing the green time 

available to other approaches. If delay is reduced by allowing a vehicle with slow 

acceleration performance to pass the intersection, green time is extended. 

The VSA traffic signal control logic at the case study intersection significantly 

reduces average stopped delay when compared to traditional pretimed traffic control. 

Predominantly, the reduction of stopped delay is attributable to reducing the probability of 

stopping vehicles with poorer than average acceleration performance, although periodically 

adjusting the cycle splits to better conform with existing traffic patterns reduces delay for all 

traffic. To make this comparison, the model includes conservative assumptions regarding 

relative vehicle acceleration performance and assumes a modest difference in the acceleration 

performance between trucks and automobiles. The benefits of AVSI in traffic control 

systems increase when the difference in average acceleration performance between trucks and 

automobiles is increased. It is also believed that benefits would increase in traffic control 

systems with several coordinated traffic signals. 
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1.2 Contribution to the State of the Art 

The application of AVSI in a traffic signal control system has not previously been 

reported in the literature. This evaluation of AVSI in traffic control systems has generated 

three significant contributions. First, the research explores the potential benefits of AVSI as 

a system for collecting traffic information as input to traffic control systems. If adoption of 

AVSI-dependent traffic control logic proves beneficial, then the evolution of traffic data 

collection systems with greater functionality is promoted. Second, a VSA signal control 

strategy is unavailable in the literature, and one is developed and described in this 

dissertation. Third, a new simulation model which incorporates VSA control logic is 

developed. 

1.2.1 Traffic Information Collection Systems 

One of the primary requirements of an effective adaptive control logic is accurate and 

advance traffic data (3). It is extremely difficult to gather adequate advance traffic data with 

common traffic detector technology. Therefore, there is an interdependence between the 

evolution of traffic information collection systems and the ability to perform more efficient 

adaptive control. That is, efficient adaptive control requires accurate advance traffic data 

(e.g., in the case of the issue being researched, it even requires vehicle specific information), 

and to justify the deployment of data collection systems requires evidence that the 

information used in traffic control will be beneficial. Because the research reported in this 

dissertation found significant benefits are possible through adaptive control logic based on 
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vehicle specific information, it promotes the deployment of technology to allow more robust 

traffic data collection systems with greater functionality. 

1.2.2. VSA TrafHc Signal Control Strategy 

Existing research of adaptive control systems considers the entire traffic stream when 

adjusting signal timings and does not consider differences in the performance of vehicles 

within the traffic stream (3-6). Traffic signal timing is adjusted regardless of the type of 

vehicle in the traffic stream. 

The VSA traffic control logic reported in this dissertation makes cycle split 

adjustments and green time extension decisions based on individual vehicle performance. 

Since heavy vehicles have poorer acceleration performance, traffic signal time adjustments 

are made to provide priority to trucks and allow them to clear the intersection. This research 

illustrates that VSA control strategies reduced stopped delay at the intersection for both 

heavy vehicles and automobiles. 

1.2.3 New Microscopic Simulation Model 

A new microscopic simulation model is developed to provide a testbed for the 

evaluation of AVSI in traffic signal control systems. Although several other microscopic 

models exist, none has the capability to incorporate VSA traffic control logic. The model 

developed is a research tool for use only in evaluation and is applied to only one intersection 

(but one with common geometry). It does, however, provide a framework for the 

development of fiiture vehicle specific traffic control systems and traffic signal timing plan 

computer analysis tools. 
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1.3 Document Organization 

This dissertation consists of six chapters. The first chapter includes a brief 

description of AVSI, the objectives of the research, and an overview of the research. This 

chapter also identifies the three significant contributions of the research. Chapter two is a 

review of the related research and related traffic signal simulation models. The third chapter 

presents the problem statement. In chapter four the methodology employed to evaluate AVSI 

in traffic signal control systems is described. The fifth chapter presents the simulation results 

and includes a case study example and an analysis of the sensitivity of the model to 

parameter changes. Chapter six presents the conclusions of the research and 

recommendations for future research. 

The dissertation includes four appendixes. Appendix I presents the derivation of the 

negative exponential distribution from the Poisson distribution. Appendixes II and III 

include listings of the computer simulation code. Appendix IV contains the delay study field 

data collection worksheets. Field data were collected to validate the result of the simulation. 
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CHAPTER 2 - LITERATURE REVIEW 

The purpose of this research is to explore the benefits of AVSI traffic information in a 

traffic signal control system. Computer simulation is an appropriate tool for this purpose, 

however, the incorporated traffic signal control systems of the existing simulation models are 

incapable of utilizing AVSI information at intersections. Therefore, a new simulation model 

with an incorporated VSA traffic signal control strategy is developed to evaluate the 

applicability of AVSI traffic information at an isolated intersection. This chapter reviews the 

related studies to justify the employed methodology. 

The related studies can be divided into three categories which are reviewed in the four 

sections of this chapter. AVSI is considered to be an advanced vehicle detector system in 

this research. Thus, in the first section vehicle detector systems are reviewed. The second 

section examines traffic signal simulation models. The third and fourth sections review 

adaptive control strategies. The chapter closes with some concluding remarks. 

There are no studies in applications of AVSI to traffic signal control systems. This 

research has the potential to begin to fill this gap in the literature. 

2.1 Vehicle Detectors 

Traffic sensing is accomplished by a device commonly referred to as a detector. 

Detectors are an important part of actuated signal control systems. For example, the decision 

of local controllers to extend green time depends upon data provided by detectors. The 

performance level of a traffic control system depends primarily upon the accuracy of data 
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which detectors provide at an intersection. This is particularly true in adaptive control 

sys tems,  because  thei r  ef fec t iveness  depends  largely  on accurate  and advance data  (3) .  

Primarily, detectors operate on two concepts: mechanical-force or energy-pattern 

change principles (7, p. 5.3). Outdated pressure detectors and pedestrian pushbuttons are 

examples of detection by the principal of mechanical force. Inductive loops, magnetic, and 

microwave detectors are classified under the energy-pattern change concept. 

The priority control system for emergency and transit vehicles sometimes use a 

special-purpose high-intensity light detector. This type of detector utilizes a high-intensity 

light relayed at a specific fi-equency from a transmitter mounted on the vehicle and a detector 

mounted on the traffic signal mast (8, p. 82; 9). 

The most commonly used detectors are inductive loops. Installation is performed by 

embedding wire loops in the pavement. Embedding the wire requires sawcuts of the 

pavement, which in turn weakens the roadway and increase the need for road surface 

maintenance. The maintenance associated with inductive loop detectors is not limited to road 

surfacing; the imbedded loops themselves should also be maintained regularly. 

New vehicle detection systems are designed to avoid the maintenance costs associated 

with the old detectors. For installation of these detectors, there is no need to interrupt traffic 

operations. Some of the newest detectors available in the market are Autoscope (10), Remote 

Traffic Microwave Sensor (RTMS) (11), and a Dual Mode (72) which use image processing, 

microwave, and radar and utrasonic technologies, respectively. 
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One of the advantages of these new detectors is they replace the inductive loops. In 

Ontario, Canada, the RTMS has been considered as an option to replace loop detectors to 

enhance traffic monitoring conditions at signalized intersections (13). A single Autoscope 

system, a video detection system, is capable of replacing up to 32 inductive loops. The Dual 

Mode detector also contains a microprocessor and memory which can accumulate data for 

periodic polling. 

Except for Autoscope, which has the capability of recognizing different types of 

vehicles within a traffic flow, none of the previously mentioned detectors has this potential. 

With this capability and tested reliability (14), Autoscope has the ability to improve traffic 

flow at an intersection in the adaptive control system. 

The classification of vehicles within a traffic flow adds a new challenge to research in 

the area of adaptive control strategy which presently examines total traffic volume in its 

signal timing adjustment algorithm. An adaptive control strategy which considers vehicle 

classifications information in its signal timing is referred to here as a VSA traffic signal 

control logic. By adjusting cycle splits at an intersection based on performance 

characteristics of vehicles in a traffic stream, a VSA control strategy is shown to be capable 

of reducing stop delay. VSA control logic is a new concept which is developed in this 

research. 

2.2 Simulation Models 

Simulation is the process of modeling the operation of an actual system. Its purpose 

is to provide a better understanding of the behavior of actual systems and to evaluate the 
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operation of potential system designs. Traffic simulation on digital computers has attracted 

considerable interest since the late 1950s (75). Since then, many traffic simulation models 

have been constructed to evaluate traffic operation for roadway facilities at a microscopic or 

macroscopic level of analysis. In an effort to combine the various categories of simulation 

models in an integrated, coherent maimer, FHWA (Federal Highway Administration) 

developed the TRAP systems {16). This section reviews NETSIM and FREFLO, two of 

TRAF systems simulation models, and five other non-TRAF simulation models. 

NETSIM, TEXAS and EVAPAS are examples of microscopic traffic control 

simulation models which are reviewed in the first subsection. NETSIM is a network 

simulation model, while TEXAS and EVAPAS models are capable of evaluating the 

performance of a single intersection. The second subsection reviews the macroscopic models 

which include TRANSYT-7F and FREFLO. TRANSYT-7F is the most frequent used 

arterial simulation and signal optimization model. FREFLO is a freeway simulation model. 

These simulation models are commercially available; however, there are many other 

simulation models which remained at a research level (7 7-20). Two of these non-commercial 

simulation prototypes designed for ITS applications are reviewed in the last subsection. 

2.2.1 Microscopic Models 

NETSIM is one of the most detailed network simulation models available for street 

networks. It is a microscopic, stochastic simulation model. Vehicles are represented 

individually and can be identified as passenger cars, buses, or trucks. Vehicles move each 

second according to car-following logic while responding to traffic control devices. 
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NETSIM does not perform design tasks and has no optimization capability for signal 

timing. The current version of this simulation model is referred to as the TRAF-NETSIM 

model (27). 

The NETSIM model capable of simulating bus preemption is called NETSIM/BPS (7, 

p. 3.39). The implemented preemption logic extends green time or terminates red time for 

the phases v^'hich service an oncoming bus. The NETSIM/BPS can only simulate preemption 

systems with pretimed controllers. 

There are other microscopic traffic simulation models such as Traffic Experimental 

and Analytical Simulation (TEXAS) and Enhance Value Iteration Process Actuated Signals 

(EVAPAS). These two models are designed for actuated as well as pretimed, controlled 

isolated intersections. EVAPAS is also an optimization model capable of determining 

optimum signal timing for various types of traffic control systems at isolated intersections 

(22, p. 31). 

With the TEXAS model, drivers and vehicles are classified individually. The model 

allows up to 15 vehicle classes (i.e., small, large, bus, full trailer, sport car) and up to 5 driver 

classes (i.e., aggressive, average, slow) (25). The particular driver characteristics and vehicle 

generation are treated stochastically in this model. 

In EVAPAS each vehicle type is assigned a particular acceleration rate which is 

analogous to the driver classifications in the TEXAS model. The average driver in the 

TEXAS model is, for instance, comparable to the imiform acceleration rate in the EVAPAS 

model. The vehicle processing in the EVAPAS and NETSIM models is constructed 
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according to a linear car-following model {24), while in the TEXAS model each vehicle 

processes through an intersection in a fixed, discrete time increment (7, p. 3.21). 

2.2.2 Macroscopic Models 

FREFLO is a macroscopic simulation model for freeway traffic. The model is based 

on a conservation equation and an equilibrium speed-density relationship with a dynamic 

speed equation {16). FREFLO can model both the regular and HOV (High Occupancy 

Vehicles) lanes of a freeway. Incidents are represented in this model by lane reduction or in 

the form of capacity restraint on the freeway section. 

TRANSYT-7F (Traffic Network Study Tool), is one of the most widely used models 

in the United States and Europe for signal network timing design {25, p. 285). It is designed 

to optimize signal timing on coordinated arterials and grid networks with either pretimed 

systems and fixed-phase sequence. Although this model is essentially a traffic signal timing 

optimization program, it also contains a traffic simulation model. Unlike the previously 

mentioned models, TRANSYT-7F is a macroscopic model which considers the entire 

intersection or arterial. 

2.2.3 Dynamic Traffic Assignment Simulation Models 

The two dynamic traffic assignment models which are discussed in this section are 

simulation models designed for ITS related applications. These models evaluate the 

effectiveness of in-vehicle real time information about the performance of a congested traffic 

network. 
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The approach adopted in the first model integrates traffic flow, driver behavior, and 

network information into a signal simulation model (26). In this simulation model, the traffic 

flow is modeled using a fluid conservation equation. It is assumed that drivers are being 

provided with the basic information regarding the travel times on the best (i.e., shortest route) 

and alternative routes. This model is capable of simulating corridors as well as general 

network systems. 

The second model, Vehicular Traffic Analysis Capability (VTAC), is capable of 

evaluating Advanced Traffic Management Systems (ATMS) and Advanced Traveler 

Information Systems (ATIS) (27). This model is intended to simulate the performance of a 

network where drivers are informed of the shortest paths to their destinations. 

Unlike most traffic simulation models, which are coded in procedural languages such 

as FORTRAN, the VTAC is developed using object oriented programming techniques. The 

decision-making feature in the VTAC model has been developed by object oriented 

programming with knowledge-structuring techniques (28). 

2.2.4 Concluding Remarks 

Dynamic route selection models and adaptive signal control systems are among those 

topics which still require more research to allow development of simulation models suitable 

for use by practicing traffic engineers (29). Dynamic route selection and driver information 

are partially addressed in the dynamic traffic assignment models such as VTAC model. It 

should be noted, however, that no simulation model for evaluating vehicle specific adaptive 

control systems have been developed. 



www.manaraa.com

15 

In this research, a simulation model with an incorporated VSA control strategy is 

developed. This control strategy could be considered an adaptive control system, allowing 

cycle splits to be adjusted based upon performance characteristics for each vehicle. 

2.3 Adaptive Control Strategy 

The growth of car ownership and truck shipments has resulted in increased 

congestion on the nation's highways and city streets. New road building has not kept pace 

with this dynamic vehicle growth rate. For years, conventional traffic control systems (i.e., 

pretimed and actuated) have provided service to cities around the world. To appreciate their 

roles in our communities, it is noted that gridlock would be the norm at busy intersections 

without appropriate traffic control systems. 

To partially alleviate traffic congestion, the concept of real time traffic control 

systems was conceived by Miller in 1963 (30). Real time traffic control is an element of ITS 

technology, commonly referred to as an adaptive control system. The objective of this 

control system is to minimize delay at intersections. 

Thirty years after this conception, adaptive control systems are still in research and 

development stages. Most research in this area is conducted for isolated intersections. In the 

following section of this dissertation, some of these studies are reviewed. 

2.3.1 Miller Algorithm 

The pioneer study of an adaptive control strategy was conducted by Miller more than 

30 years ago (1963) (50). In this traffic control algorithm, called a timing control system, a 

computer scans the provided information from the detectors for each intersection at regular 
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intervals of two seconds (h) and decides whether to change the signals or not. These 

decisions are based upon estimates of delay which will be incurred if the signals are changed 

immediately or in h seconds. The signals are left unchanged unless it appears that less delay 

will result fi-om an immediate change. For arterial control, this control logic considers the 

delay which vehicles are likely to experience at the next intersection. 

Based on Miller's algorithm, Traffic Optimization Logic (TOL) was developed (4). 

In this method the time interval for checking the detectors information, is changed to one 

second. The decision to extend green time is based on the costs and benefits imposed upon 

motorists due to green extension. For a simple two phase signal intersection, one control 

fiinction calculates the benefit for the traffic that can pass during the green extension of the 

running phase. Simultaneously, another control function calculates the cost to vehicles that 

will be further delayed on the other phase because of the green extension of the running 

phase. If the benefits exceed costs, the controller extends the green time by one second, 

otherwise it terminates the green as scheduled. 

The criteria for determining costs and benefits in the TOL method are based on two 

parameters in the control function. The first is the cost of delay per second. The second is 

the cost to bring a vehicle to a complete stop. The same cost of delay is considered for each 

vehicle type. It is noted that in reality, the cost of delay for a commercial truck is greater 

than that for a passenger vehicle. This methodology could be improved if the information 

provided by the detectors also indicated vehicle classifications, as in AVSI where vehicle 

types are known. 
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Another model which used the Miller algorithm for its optimization process, is the 

Modernized Optimized Vehicle Actuation (MOVA) (3J). This strategy relies less on 

forecasted data and more on actual information. Two detectors for each approach lane are 

used, one at 40 meters and one at 100 meters upstream of a stop line. Initially, each lane 

receives sufficient green time to discharge vehicles waiting within the 40 meter zone. The 

time intervals between the 40 meter and 100 meter detectors are examined for any changes in 

saturation flow rate. If the flow rate is increased, suggesting that more vehicles are 

approaching the intersection, the current green will be extended. In situations where one or 

more approaches fail to completely clear the queued vehicles at the end of their green time, 

MOV A switches from a delay minimizing process to capacity maximizing routine to clear 

those congested approaches. 

2.3.2 Demand-Responsive Traffic Control Strategy 

The next model reviewed in this section is Optimization Policies for Adaptive Control 

(OPAC) (5). The development of this model began with global optimization of a multistage 

adaptive control system, using a dynamic programming technique. This approach required 

advance traffic data for an entire period. The approach was simplified to require less advance 

data, but it still needs future traffic arrival information for the entire stage (i.e. 50-100 

seconds—cycle length of a pretimed signal). 

In the final approach, the rolling horizon concept which could function well with 

available traffic flow data were introduced. The rolling horizon concept is used by operation 

research analysts in production-inventory control. In this approach the stage length was 
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divided into k intervals. For a period of r intervals (the head period) actual arrival data would 

be available. For the next k-r intervals (the tail period) flow data are assumed or forecasted. 

The entire stage is optimized but the result applies only to the head period. The entire stage 

is then shifted (rolled) r units forward, new traffic data are obtained for the head and tail, and 

the process is continuously repeated. 

Other studies found that the 50-100 second stage length recommended in OPAC is 

excessive, since only the first 10-15 seconds of the stage (i.e., the head) can be expected to 

have reliable vehicle arrival information (5,52). These studies recommended 25 seconds for 

signal timing optimization. Even for a 25 second stage, however, the data for the tail of the 

stage should be forecasted. With the shorter tail period, it is noted that more accurate 

optimization would resuh. It was also found that stage subintervals (i.e., k intervals) of 3-5 

seconds are adequate for an optimum solution (55). 

The OPAC system received considerable attention during the 1980s. In one study, 

the required interfaces among the OPAC strategy, the signal control equipment, and vehicle 

detectors for a field test were examined (34). In another study a modified version of OPAC 

was evaluated using only predicted data (55). Three different predictors were used to 

forecast required data. Although none of the errors for the predictors was sufficiently small, 

the predicted data produced by an exponential smoothing technique were selected for the 

control policy evaluation for simplicity. 

The evaluation of the modified OPAC points out two issues of importance. First, 

traffic flow is difficult to predict. As the prediction period becomes larger, the data obtained 
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become less reliable. Second, adaptive control systems perform better using real data rather 

than forecasted traffic information, as adaptive control systems need accurate and advance 

traffic data in real time. To provide such data, detectors can be moved further upstream. 

Nonetheless, as more advance traffic information is supplied, the accuracy of the data 

decreases because of the fluctuation of traffic flows. This problem can be solved by using 

AVSI. The variability of the information provided by the AVSI is minimal, because it could 

continuously update the controller with accurate and advance data. 

2.3.3 Stepwise Signal Conirol System 

The decision to extend or terminate green in the Stepwise Adjustment of Signal 

Timing (SAST) model is divided into four levels (5). The decisions at each level are based 

on specific conditions. At level one, the current green is extended if no vehicles are expected 

from the competing phases within the next few seconds (e.g., six seconds). At level two, the 

maximum expected queue length of the green phase is checked with a threshold value (e.g., 

four vehicles). If the expected value is larger than the threshold value, the current green is 

extended. At levels three and four, other criteria are examined for extending green time. If 

green time is extended in one level, the model does not continue to check subsequent steps. 

SAST does not impose any constraint on the placement of detectors. 

Simulation analyses of the SAST model against a loop occupancy control strategy 

(i.e., uses long loop detectors to detect the presence of vehicles) have shown that SAST is 

capable of reducing an intersection delay by 8 to 15 percent. 
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2.3.4 Adaptive Control System for Networks 

SCOOT (Splits, Cycle, Offset Optimization Technique) is an adaptive control 

strategy designed to coordinate networks of traffic signals. SCOOT, developed by the 

Transport and Road Research Laboratory (TRRL), was first tested in Glasgow, England in 

1979 (36). Since then, 53 SCOOT systems have been installed in approximately 25 cities in 

the United Kingdom, as well as a number of other countries (37,38). The application of 

SCOOT to network systems in the United States will be addressed by a test implementation 

project of the system in Anaheim, California. This particular area generates large and 

unpredictable traffic flows. The purpose of this project is to assess the degree of expertise 

required to install a new system (38). 

As an alternative to Urban Traffic Control (UTC) systems, which operate on fixed 

timing plans, SCOOT operates on a flexible time plan that can be expanded or contracted 

depending on the traffic information provided. This responsiveness is achieved by 

optimizing splits, offsets, and cycle length (36,39). 

A few seconds before every phase change, the split optimizer calculates whether it is 

better to make the split change earlier or later than the scheduled time by up to four seconds 

or to leave it unchanged. The objective of split optimization is to minimize the maximum 

degree of saturation on approaches to a particular intersection. At the end of each cycle, the 

offset optimizer evaluates whether delay on streets around the intersection can be reduced by 

increasing or decreasing the offset by four seconds. The suggested split and offset changes 

are implemented immediately. Any alteration to the green duration for each split would be 
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temporary, and for each adjustment, a permanent change would be made to the signal timing 

plan. Accordingly, the cycle time optimizer would change the cycle length of a group of 

intersections by a few seconds every few minutes (e.g., 2.5 minutes). 

The SCOOT model has been relatively successful for optimizing traffic flow in 

uncongested situations {40). It has also been shown that SCOOT can improve traffic flow 

operations in networks as well as for isolated intersections {41), during afternoon peaks, 

under low flow conditions {42), and in cases of road closure because of an incident {43). 

The key to the success of the SCOOT system is the inclusion of concepts (i.e., 

making many small signal timing adjustments) which most other adaptive control strategies 

do not include. These concepts were suggested by Robertson in 1972 {36). In summary, 

SCOOT makes many small, but frequent, changes to signal timings and offsets. Typically, in 

a network of 100 intersections over 10,000 small optimization decisions per hour will be 

made {39). In this way SCOOT controls the traffic on a signal timing plan that evolves 

through time. 

2.3.5 Concluding Remarks 

Adaptive control systems have the potential to improve traffic flow at intersections. 

Nonetheless, more work is required before adaptive control systems can effectively replace 

vehicle-actuated systems. There is one principal difference between vehicle-actuated systems 

and adaptive control systems. In adaptive systems, the objective is to minimize delay at 

intersection, while in actuated systems no optimization process is performed. With an 

actuated system, green is granted to the minor street regardless of the number of waiting 



www.manaraa.com

22 

vehicles detected. With an adaptive control system, however, since the objective is to 

minimize delays at intersections, green time granted to the minor street is based upon the 

number of vehicles waiting. 

The adaptive control system most widely accepted by transportation agencies is the 

SCOOT model. The system works for two reasons. First, it does not depend upon predicted 

traffic data. Second, if split or offset timing needs to be adjusted, it occurs in small frequent 

changes. 

Field test results indicate some adaptive traffic control models perform better when 

the approaching traffic flow is high. The Miller algorithm was more effective at traffic flows 

of 3,000 vph {44), whereas TOL strategy performed well at 4,000 vph {4). 

Adaptive control systems are still in the research stage. Most of the adaptive control 

strategies are for isolated intersections and they remain as prototypes. The only practical 

adaptive control system is SCOOT, which was developed for network control. 

2.4 Expert Systems and Traffic Signals 

An expert system can be defined as: "a computer program that embodies the expertise 

of one or more experts in some domain and applies this knowledge to make useful inferences 

for the user of the system" {45). Several characteristics distinguish expert systems from 

conventional computer programming systems. One of the most important characteristics is 

the separation of knowledge and control algorithm in expert systems. Knowledge base and 

control algorithms are the two primary components of an expert system. In expert systems. 
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the control algorithm is referred to as the inference engine. The inference engine interprets 

the knowledge and applies it to solve a particular problem. 

Expert systems can be developed by using available computer packages, as well as 

with low-level expert system computer languages such as LISP, PROLOG, and object 

oriented programming techniques. Commercial expert system shells, however, are not as 

general and flexible as programming languages since they are specially designed for only 

certain groups of problems. Of the more than 30 expert system shells reviewed by Chang, et 

al. (46) for traffic signal design, only two packages were recommended for this purpose. 

Expert systems hold significant potential for solving problems which do not have 

explicit numerical algorithms and that require human judgment and experience for the final 

answers. Transportation problems such as traffic control and pavement management can 

make good use of expert systems, since their final solution is based on judgment and human 

expertise. Most of the transportation expert system models are at the prototype stage and will 

require extensive testing before becoming commercially available (47). 

There are few expert system models available for traffic control systems. SCII (48), 

SCII-2 (d), and INTEL (49) are three models which use expert systems for controlling 

signalized intersections. In this section expert system prototypes used for designing signal 

timing, as well as the SCII and SCII-2 models are reviewed. 
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2.4.1 Semi-Actuated Control Knowledge Base 

A Knowledge base is a critical element of an expert system. A Knowledge base is 

constructed by using the knowledge and experience of human experts. An alternative method 

of building this critical element of an expert system is by using a simulation model. 

Lin (50) used a simulation model to build a knowledge base for designing a 

semi-actuated control system at isolated intersections. Through this approach, the design 

parameters were tested for their best responses in each simulation run. In order to find the 

optimum green extension time, for example, the detectors' distances from the stop line were 

varied in different simulation runs. As a result, zero second green extension was 

recommended for detector distances of 65-80 ft. 

The design parameters used in Lin's study were phasing plan, detector distance, and 

minimum and maximum green time. This study has concentrated only on developing a 

knowledge base. This knowledge base is an informational tool which can help traffic 

engineers to design semi-actuated traffic signals. Using this knowledge base, an expert 

system for designing semi-actuated signals could be developed. 

2.4.2 Traffic Signal Timing Design Expert Systems 

Traffic signal timing design is a process which lacks explicit numerical algorithms. 

Therefore, the knowledge and experience of traffic engineers are important factors in this 

process. A few expert system prototypes have been developed which use a computer routine 

to emulate the traffic signal timing design procedures. Three of these expert systems 

prototypes are reviewed in this subsection. 
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The first prototype, TRALI, is an interactive expert system which assists traffic 

engineers in the designing procedures to identify an optimum phasing plan and cycle length 

(51). After a user inputs traffic flows and intersection geometry, TRALI proposes a phase 

plan. The proposed phase plan is evaluated by calculating the delay using Webster's formula 

(52). By specifying a cycle time range, the user is able to ask the model to suggest an 

alternative phase plan. 

Similar to the TRALI model, PHAST (55) uses heuristics to determine phases and 

green times for single intersections. PHAST, a knowledge based expert system (KBES) 

model, emulates the design procedures that an experienced traffic engineer will take into 

account while designing a traffic signal. It determines initial phase and timing plans, 

evaluates intersection performance, and modifies suggested plans if they are determined to be 

inadequate. The evaluation aspect of this model is done by the microcomputer version of 

Highway Capacity Manual (HCM) and the results are manually fed back into the model. 

TRALI, on the other hand, carries out the evaluation automatically in the model. The graphic 

input interface and output display in PHAST is a plus when compared with the limitations of 

TRALI. 

The next expert system prototype proposed a framework for an intelligent traffic 

signal design {54). It was proposed that at the first level, an expert system determines a 

phase plan for the signalized intersection. A simulation program then evaluates the 

performance of the intersection for the proposed phase plan. At the final stage, through 

another expert system module, based on simulation outputs, the system is able to decide 
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whether to accept the suggested phase plan. This prototype only discussed the first stage of 

the framework. For this stage an expert system called PHASES was developed to select the 

best phasing pattern. 

The first two stages of this framework are similar to the structure that has been used 

in TRALI and PHAST. In TRALl, instead of using a simulation process, the corresponding 

delay and the optimum cycle length are calculated through Webster's formula. In PHAST, on 

the other hand, this stage is performed manually. This proposed framework is intended more 

for an inexperienced traffic engineer because at the end, the expert system decides whether or 

not to accept the design. 

2.4.3 Adaptive Control Strategies Expert Systems 

TRALI, PHAST, and PHASES could be considered to be off-line traffic signal 

models which interactively assist traffic engineers in signal timing decision-making. On the 

other hand, the next model, Signal Control at Isolated Intersection (SCII), could be regarded 

as an on-line expert system prototype for traffic signal control {48). 

SCII has taken a different approach than the previously explained adaptive control 

logic to model adaptive control strategies. Models such as OP AC and TOL continuously 

monitor traffic information in interval of one or two seconds to decide to whether extend or 

terminate green time. In contrast, SCII evaluates the performance of the signalized 

intersection at the end of each cycle. It determines the levels of service for each approach 

and the intersection. Based on heuristics, the levels of service are converted to a value 

between 0-100. If this performance grade exceeds the user-set threshold value, it continues 
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with the existing signal timing. Otherwise, based on the predicted traffic volume for the next 

cycle, it recalculates the signal timing and determines the appropriate cycle length. If the last 

traffic volume data reflects a new trend in the database, it updates the database by adding the 

new data and deleting the old. It then repeats the entire procedure at the end of each cycle. 

Since SCII uses predicted data, it does not require advance traffic information. To 

predict the next cycle traffic volume it uses a forecasting model which is a function of current 

volume and the previous volume data stored over past cycles. 

The enhanced version of SCII, named SCII-2, was developed to handle different types 

of intersection geometries and conventional traffic signal operations (6). In this model the 

performance grade for each cycle is determined based on the combination of delay and queue 

length. This prototype was evaluated by the TEXAS simulation model using 20-minute 

traffic volume data. 

The SCII-2 also includes a logic for switching controller operation from actuated to 

pretimed during heavy traffic conditions and vice versa (J5). Based on the traffic volume at 

the end of each cycle, it determines the transition point for switching the control strategy. 

The appropriate signal operation is determined by the methodology outlined in NCHRP 

Report 233. It is believed that this part of SCII-2 did not involve any expert systems 

methodology. 

2.4.4 Concluding Remarks 

There are a limited number of expert systems studies in the area of traffic signal 

design and control. This is particularly true for signal control systems where only a few 
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models are available. Furthermore, not all of the discussed models apply expert systems in 

their approaches. 

The review of the computer program code developed by Elahi (56) suggests that SCII 

and SCII-2 are not traditional expert system models with separate knowledge bases and 

inference engines. Radwan et al. (57) provided some of their experience during the 

development of SCII. Through one of their experiences they state; "...we are often asked 

whether the system is a KBS (knowledge base system)." They continue with: "since the 

definition for KBS to which many people subscribe involves the inclusion of an inference 

engine and a knowledge base, they expect descriptions in these terms." They also point out 

they did not anticipate the controversy that centers around whether or not SCII is a KBS. 

Building a traditional expert systems model for signal timing in a traffic control 

system would be a difficult, perhaps impossible, task. This is because a true knowledge base 

requires explicit rules, which would be very difficuh to establish in the case of signal timing. 

2.5 Chapter Summary and Conclusion 

The capabilities of existing vehicle detectors are limited to detecting the presence and 

passage of vehicles. They are incapable of providing advanced traffic data, and their 

accuracy declines over the time due to pavement deterioration and exposure to all extremes 

of weather (particularly moisture). As such, they require frequent maintenance. New vehicle 

detection systems, however, are designed in such a way as to avoid frequent maintenance. 

They can also provide more accurate and advanced traffic data. 
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The review of the simulation models indicates that they are not suitable for evaluating 

the effectiveness of AVSI in a traffic signal control system since their incorporated traffic 

signal control systems (i.e., pretimed and actuated) are incapable of using the additional 

vehicle specific traffic information that AVSI could provide. Therefore, in this research, a 

new microscopic simulation model with an incorporated VSA control logic is developed. 

VSA control logic is an important element of the simulation model which could 

utilize AVSI traffic information at signalized intersections. The examination of adaptive 

control systems indicates that the consideration of performance of vehicles is not part of their 

decision-making processes. They only consider total traffic volume in adjusting signal 

timing at intersections. 

One of the unique features of AVSI is its capability to provide the classification of 

vehicles within a traffic flow. This unique feature of AVSI provides an opportunity for a 

VSA traffic signal control strategy to adjust cycle splits according to the characteristics of 

each vehicle within a traffic stream. 

This research is expected to fill some of the gaps in the existing literature by 

developing a simulation model and a VSA signal control system which facilitate the 

evaluation of AVSI performance as a part of a traffic signal control system. 
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CHAPTER - 3 PROBLEM STATEMENT 

Existing vehicle detectors, whether magnetic, inductive, or microwave, are designed 

primarily to sense the presence and passage of vehicles. When coupled with a traffic signal 

controller, detectors are used to derive traffic volume, vehicle speed, lane occupancy, and 

queue length {25, p. 285). Vehicle speed, for example, can be determined based on the 

spacing between detectors and the time which a vehicle takes to travel the distance between 

two detectors. They are, however, unable to determine the type and performance 

characteristics (e.g., size, weight) of the detected vehicles. 

As an alternative, AVSI would be capable of detecting vehicles and providing vehicle 

specific information. In the application to traffic signal control systems, AVSI is assumed to 

be capable of providing vehicle specific traffic information to a local microprocessor-based 

traffic signal controller. Based on the AVSI traffic information, the controller then adjusts its 

signal timing to reduce intersection delay. 

The purpose of the research is to explore the potential benefits of AVSI vehicle 

specific information in a traffic signal control system. The AVSI traffic information 

considered in this research includes vehicle types and arrival times. Also, to limit the scope 

of the research to a manageable size, the benefits of use of AVSI information are evaluated at 

an isolated intersection. Future research may investigate the benefits of AVSI to traffic 

signal control systems. 

If delay reduction at an intersection is the measure of effectiveness of a traffic signal 

control system, a tool is needed to estimate benefit. Computer simulation is a well known 
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and powerful technique for testing the impact of changes in variables or parameters for 

systems that carmot be solved analytically {58, p. 227). It is also an appropriate tool for 

traffic experiments which for one reason or another, cannot be applied in the field. The use 

of AVSI information in a traffic control system can be categorized as a system where it may 

be impossible to evaluate system performance analytically, and it would be extremely costly 

to examine its applicability through experiments at an actual intersection. Thus, in this 

research, a simulation model is used to evaluate the effectiveness of AVSI in a traffic signal 

control system. 

3.1 Simulation Model 

Existing traffic control simulation models, such as NETSIM and TEXAS, are not 

suitable for evaluation AVSI, since their incorporated signal control system strategies (i.e., 

pretimed and actuated systems) are not designed to utilize vehicle specific information. The 

strategies engaged in these signal control systems are based on the assumption that heavy 

vehicles make up a constant portion of the traffic stream. In an actuated control system, for 

example, the green phase may be extended, up to an assigned maximum green, for every 

actuation generated by a detector regardless of vehicle characteristics. 

Customizing the existing simulation models to use AVSI information would be 

difficult, if not impossible. Therefore, a new simulation model is developed to evaluate the 

use of AVSI information for adjusting the timings of a traffic signal control system. This 

new simulation model is a microscopic, stochastic, single-server model. 
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3.2 VSA Traffic Signal Control strategy 

An important part of the simulation model is the development of a VSA traffic signal 

control strategy. A VSA traffic control system adjusts the signal timing based on AVSI 

traffic information. Compared with an actuated control system which adjusts signal timing in 

response to fluctuating traffic volumes, the VSA traffic signal control strategy examines 

individual vehicle performance characteristics before extending a phase green time or 

implementing a new cycle split. 

It is suggested that traffic throughput at an intersection would be improved if heavy 

trucks could clear an intersection without delay. The objective of the VSA control strategy 

used in this research is to facilitate truck traffic at intersections. Although in VSA signal 

control logic trucks are given green time extension priority, the control strategy is not a truck 

preemption control system (i.e., cycle splits in this control logic are not adjusted each time a 

truck is detected). The VSA control strategy examines the status of other phases, prior to 

granting a green time extension to an approaching truck. As an illustration, if adjusting cycle 

splits would cause increased intersection delay, cycle splits are not adjusted for the detected 

truck. 

VSA traffic signal control strategy is a new signal control logic which has not 

previously been investigated. The methodology used in this research to model VSA traffic 

signal control logic consists of two parts. In the first part, Webster's equation is used to 

compute optimum cycle length (52, p. 13) and appropriate cycle splits (59, p. 9-67). In this 

case, the actual traffic flow and heavy vehicle percentages are considered changeable 
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parameters in Webster's equation. Based on traffic volume and percent of heavy vehicles in a 

traffic stream, the VSA control strategy periodically (e.g., every 5 minutes) adjusts its cycle 

splits according to the present traffic demand. 

The first part of the VSA control system lacks decision-making capabilities, therefore, 

excessive delay may often be incurred at an intersection. To address this problem, the second 

part of the VSA control logic readjusts cycle splits to account for the most recent traffic 

conditions. By readjusting the green times, a slow-moving truck may be prevented from 

stopping, thereby resulting in decreased intersection delay. The second part of the VSA 

control logic involves decision-making processes using an heuristic. The heuristic could be 

considered to be nontraditional expert systems technology, since it may still require input 

from an expert. 

Using the simulation model developed for this research, the incorporated VSA control 

strategy is tested against a pretimed control system. The simulation results indicated that 

through the use of AVSI traffic information, the VSA control logic can improve intersection 

performance by reducing vehicles stopped delay at an intersection. Moreover, the validation 

of the simulation model has established a level confidence in the obtained simulation results. 
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CHAPTER 4 - METHODOLOGY 

The purpose of the research is to explore the potential benefits of traffic information, 

provided by AVSI, in a traffic signal control system. AVSI is capable of detecting and 

providing vehicle specific traffic information. However, this research only examines the use 

of AVSI to determine vehicle types and arrival times at a traffic signal controlled 

intersection, as well as those vehicles approaching the intersection. It is assumed that AVSI 

provides arrival time and type of each approaching vehicle to a local traffic signal controller 

at an isolated intersection. Based on the AVSI information, the controller then adjusts its 

signal timing to reduce intersection delay. 

In this research, a simulation model is developed to measure the effectiveness of 

AVSI traffic information in reducing delay at an intersection. The first four sections of this 

chapter describe the structure and the strategies used in the simulation model. In the fifth 

section the VSA signal control strategy, which is incorporated in the simulation model, is 

reviewed. 

4.1 Simulation Model Structure 

The steps involved in the formulation of the simulation model are adopted from the 

Transportation Research Board special report 165 (60, p. 178). This report suggests a 

systematic approach for simulating traffic flows at an isolated intersection. This approach is 

applied to the case study described in this research. 
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4.1.1 Step 1 - Case Study 

The formulation of a simulation model starts with the selection of the traffic situation. 

The selected case study in this research is a four-leg, four-phase isolated intersection, shown 

in Figure 4.1. The phase pattems and layout of the selected intersection resemble the 

intersection of Lincoln Way and Duff Avenue located on the east side of the City of Ames, 

Iowa. 
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Figure 4.1 Four-Leg Four-Phase Isolated Intersection 

4.1.2 Step 2 - Measure of Effectiveness 

The second step in a simulation formulation is to define a figure of merit or measure 

of effectiveness (MOE). The MOE of the new simulation model is the average stopped delay 

of vehicles at an intersection. The average stopped delay of vehicles can further be classified 
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into the delay of heavy vehicles or trucks and the delay of all other vehicles. The output of 

the simulation model, however, is not limited to only average stopped delay. It could also 

include maximum stopped delay and maximum and average queue length of each intersection 

approach. 

4.1.3 Step 3 - Degree of Complexity 

The third step of a simulation development requires defining the degree of the model's 

complexity. The simulation technique for modeling a single intersection can be classified 

into two categories (58, p. 235). Simulation models under the first category deal with the 

mutual interaction of vehicles on a roadway. One of the most useful techniques for 

s imulat ing the  vehic le  in teract ions  in  a  t raf f ic  f low is  the  use  of  car- fol lowing theory (61) .  

CARSIM (19) and WEASIM (20) are two examples of car-following models which simulate 

stop-and-go conditions and weaving sections of freeways, respectively. 

Under the second category, the distance component is neglected, and a model only 

simulates the sequence of vehicle arrivals and departures (17,18). The pattern of vehicle 

arrivals at an intersection is defined by the arrival time distribution of vehicles from 

cormecting streets. Thus, each connecting street or link can be dealt with as a "black box" 

(58, p. 236). In this context, simulation models have no capability to capture vehicles' 

interaction. A vehicle arrives, waits in a queue, "seizes" an intersection, "holds" the 

intersection for a designated time, and leaves the intersection. There is no physical space 

assumed between vehicles; rather they are separated by a time component. Thus, vehicles in 
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a queue can be visualized as a stack of cards where the bottom one would be the next to enter 

the intersection, once the intersection is available. 

A car-following model is capable of simulating intersection traffic flow more 

accurately. However, with a lesser degree of complexity, the second simulation technique 

can also provide satisfactory results, when stopped delay at an isolated intersection is under 

investigation. Therefore, the second technique is appropriate for simulating traffic flow in 

this research. Accordingly, each connecting street of the intersection is treated as a "black 

box" in the new simulation model. This assumption is valid as traffic delay on connecting 

streets is usually caused by a traffic signal and not by mutual interactions of vehicles in the 

link (58, p. 236). 

4.1.4 Step 4 - Vehicle Arrivals Pattern 

In the fourth step of a simulation model formulation, the pattern of vehicle arrivals on 

each link needs to be determined. Arrival of vehicles at an intersection could be described as 

a random event. That is, the number of vehicles arriving in a given time interval is 

independent of the number of vehicles that arrived during any other time interval. Based on 

the assumption that arrival of vehicles is randomly distributed over time, the Poisson 

distribution can be used to predict vehicle arrivals and, in turn, the exponential distribution 

can be used to describe vehicle interarrival times (i.e., time between vehicle arrivals) or 

headways, {62, p. 354). 

The Poisson distribution is related to the exponential distribution in that, if vehicle 

arrivals in a given period of time are Poisson-distributed with a mean of X, then the vehicle 
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interarrival times are exponentially distributed with a mean of l/X (63, p. 47). Appendix I 

includes the mathematical derivation of the exponential distribution from the Poisson 

distribution. 

The exponential distribution, often named negative exponential distribution, is only 

applicable when traffic flow is light (60, p. 23; 62, p.352), that is, when there is no interaction 

between vehicles. The new simulation model also assumes no vehicle interactions, because 

each link is treated as a "black box." Moreover, since the objective of the simulation model 

is the computation of intersection delay, the negative exponential distribution is an 

appropriate choice for describing traffic flow in each link (60, p. 31). 

One shortcoming of the negative exponential distribution is the generation of some 

short headways. Vehicles require front-to-front physical spacing equal to at least a car length 

(62, p. 356). One approach to correct this situation is to define a minimum allowable 

headway. This can be visualized by shifting the exponential curve to the right by an amount 

equal to the defined minimum allowable headway. This is called shifted exponential 

distribution. 

In order to describe traffic flow with a shifted negative exponential distribution in the 

simulation model, vehicles are initially generated by a negative exponential distribution. If 

the generated headway is less than a required headway, the simulation model then 

determines the adequate headway, and uses the new value instead. The minimum allowable 

headway in the simulation model is a variable number. It depends on the types, lengths and 

speeds of the two vehicles that follow each other. For example, when a truck (i.e., assumed 
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60 ft) is followed by a passenger car (i.e., assumed 15 ft), the required headway should be at 

least 1.59 seconds. A 1.59 second headway is determined by assuming approaching speed of 

30 mph (i.e., 44 ft/sec), and clearance distance of 10 feet between a truck and a car. That is: 

Headway = = 1.59 seconds. 

If the generated headway is less than 1.59 seconds, the simulation program discards the 

generated value and uses the calculated headway. 

4.1.5 Step 5 - Vehicle Processing 

The fifth step of the simulation formulation is to define a model for processing 

vehicles through the intersection. As early as 1947, Greenshields, et al. {64) studied the 

performance of drivers and vehicles at signalized intersections. They measured the time 

required for vehicles to enter an intersection after the traffic signal turned green. According 

to this study, the first car at the head of a queue enters the intersection 3.8 seconds after the 

signal turns green. The second car enters the intersection 3.1 seconds after the first car. 

After the sixth car, the headway remains as 2.1 seconds for the rest of the cars in queue. The 

study also indicated that because of lower acceleration ability, truck headways were about 1.5 

times passenger car headways. The corresponding headway values reported by Greenshields, 

et al., are tabulated in Table 4.1. Figure 4.2 shows these headway values graphically. Each 

box shown in Figure 4.2 represents a vehicle. 

The performance of vehicles has been changed dramatically since 1940s; however, 

some later studies confirmed the headway values estimated by Greenshields, et al.. In a 1961 

study, the headways of the first few cars were reported to be less than these calculated values; 
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however, the minimum headway was still reported as about 2.1 seconds (65). A 1975 study, 

also suggested the same headway values calculated by Greenshields, et al. for simulating 

traffic flows at a signalized intersection {60, p. 179). 

In order to determine whether the headway values estimated by Greenshields, et al. 

are still valid in 1994, a limited field study was conducted at several intersections in Ames, 

Table 4.1 Greenshields Headway Values 

Sequence of Cars Seconds Before Each Car 
in a queue Enters the Intersection 

First 3.8 

Second 3.1 

Third 2.7 

Fourth 2.4 

Fifth 2.2 

Sixth 2.1 

18.4 

3.8 
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sec 

3.1 sec M 

9. 
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2.7 

1 

6 
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2.1 

I 2 3 4 5 6 7 

Figure 4.2 Greenshields Headway Values 
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Iowa. In this study, immediately after the traffic signal turned green, the time that each 

vehicle in the queue took to cross the stopline was recorded. Depending on the 

responsiveness of the drivers and the performance of the vehicles different headway values 

were recorded. However, on average, the headway for passenger cars was found to be about 

two seconds. Obviously, trucks need more time to clear an intersection. This extra time, of 

course, depends on the position of a truck in a queue. If a heavily loaded truck is the first in 

the line, it takes more time to leave an intersection than, if it is the seventh vehicle of a queue. 

The simulation model employs the logic developed by Greenshields et. al. for 

discharging vehicles through the intersection, except here, it is assumed that each passenger 

car in a queue takes two seconds to cross a stopline. Since an average headway value is used 

for passenger cars, it seems appropriate to use an average headway for trucks. Therefore, a 

headway of three seconds, that is 1.5 times a passenger car headway, is used for trucks. The 

MOE of the simulation is defined as stopped delay, thus, a vehicle clears an intersection 

without delay only when a traffic signal is green and there is no queue. Otherwise (i.e., green 

signal with queue, or red signal), vehicles are processed through an intersection with the 

assigned headways. 

4.1.6 Step 6 - Computer Language 

The last step of the formulation of a simulation model is to select an appropriate 

computer language. In this research, the simulation is coded in SIMAN (SIMulation 

ANalysis) simulation language (63). SIMAN has been selected among other simulation 
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languages both because of its advanced features and because of the author's prior knowledge 

ofSIMAN. 

4.1.7 Section Summary 

In summary, a new simulation model is developed to determine average stopped 

delay at an isolated four-leg, four-phase intersection. The intersection is modeled as a 

single-server facility, that is, green time for a given signal phase is red time for other phases. 

In this regard, by serving the vehicles in one phase, more queue will be accumulated in other 

phases. Furthermore, the simulation model assumes no interaction between vehicles in the 

links. It only simulates the sequence of arrival and departure of vehicles at the intersection. 

Therefore, each link is considered as only a feeder. Vehicle arrivals in each link are 

described by the negative exponential distribution. Vehicles are processed through the 

intersection according to a modified version of logic developed by Greenshields, et al., using 

a constant average headways for passenger cars and trucks. The assumption of using 

constant average headways in a simulation model is found to be a good approximate solution 

to the problem of determining traffic delay at intersections {66, p. 52). Finally, this 

simulation model can be considered to be a stochastic model, since the interarrival time of 

vehicles is modeled as variables which have probability associated with each of the possible 

values {67, p. 271). 

4.2 Simulation Modules 

The simulation model consists of two modules: traffic flow and traffic signal control. 

The traffic flow module is responsible for generating vehicles on each link, registering 
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arriving vehicles, moving vehicles through an intersection, and recording a vehicle's stopped 

delay. The traffic signal control module, on the other hand, emulates a local traffic signal 

controller at an intersection. 

An important part of the signal control module is the inclusion of the VSA traffic 

signal control logic. The implemented VSA control strategy adjusts the signal timing based 

on AVSI traffic information which is complied in the traffic flow module. Figure 4.3 shows 

the flow of data in the two modules of the simulation model. The next two sections contain 

detailed description of these two modules. 

Traffic Flow Module 

Wait for 

Green Signal 

AVSI 

Information 

Assignment 

Green 

Light 

Traffic Signal Control Module 

i Part II I 

Part I 

Split " 

Readjustment 

at End of a Phase 

Periodic 

Split Adjustment 

Clear 
Intersection 

output 

Data 

:x: 

Figure 4.3 Structure of the Simulation Model 
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4.2.1 Traffic Flow Module 

The traffic flow module consists of four independent submodules. Each submodule 

models a signal phase and its associated link at an intersection. Vehicles are generated in 

each submodule according to a negative exponential distribution. Once a vehicle is 

generated, based on an estimated discrete distribution (e.g., 30% trucks, 70% passenger cars), 

it is classified as a truck or a passenger car. Whether a vehicle is turning or moving through 

the intersection, is next attribute which is assigned according to a discrete distribution (i.e., 

15% right turn, 30% left turn, and 55% through). 

Next, based on the assigned direction, the model selects an appropriate lane for the 

vehicle to enter the intersection. As shown in Figure 4.1, each intersection approach has two 

through lanes. Unlike right or left turning vehicles, through traffic has the option of choosing 

either lane. In this multiple-queue system, it is assumed that through vehicles select the 

shortest queue lane to enter the intersection. 

Once a vehicle is at the intersection, depending on traffic signal status, it either clears 

the intersection or comes to a complete stop before leaving the intersection. In the first case 

when a traffic light is green and no vehicles are waiting, the service time, or the time a 

vehicle occupies an intersection, is zero seconds. In this case, no delay is recorded for the 

vehicles. In the second case when a traffic light is red, or other vehicles are waiting to be 

discharged, a predetermined service time (i.e., passenger cars two second, trucks three 

seconds) is assigned to each vehicle. The vehicle delay, in this case, is the sum of its service 

time and the time that a vehicle is stopped before it is served. 
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The traffic module is responsible for clocking the time that each vehicle spends in the 

system. Thus, the average delay at any given time can be obtained directly from the 

simulation output. The average delay that vehicles experience at the end of each phase is an 

important parameter which is used in decision-making processes of the VSA traffic signal 

control logic. 

4.2.2 Traffic Signal Control Module 

The traffic signal control module represents a local traffic signal controller at an 

intersection. The sequence of this traffic signal is green, all-red, and red for each approach. 

The yellow light is considered as a green signal, since it is assumed that drivers treat the 

yellow light as the last portion of the green period. The all-red period compensates for the 

start-up and signal change interval lost time, which has not been included in the constant 

average service time of vehicles. Thus, the all-red period is assumed to represent the lost 

time of a cycle. 

The initial cycle length and cycle splits are determined in the traffic signal control 

module. Based on the information sent from the traffic flow module, the incorporated VSA 

signal control logic periodically (e.g., five minutes) determines a new set of cycle splits 

according to current traffic volume and truck percentages. By engaging the second part of 

the VSA control logic, the signal control module further readjusts the cycle split at the end of 

each phase to meet the most recent traffic condition. The VSA signal control strategy is 

described entirely in section 4.2. 



www.manaraa.com

46 

4.3 Simulation Input and Output Data 

The vehicle interarrival times is the only data set which needs to be input into the 

simulation model through the traffic flow module. The interarrival times are defined by a 

negative exponential distribution. Other vehicle attributes, such as a vehicle type, direction, 

and service time are the predefined values which will be assigned to a vehicle after it enters 

the system. The output data including, the stopped delay of vehicles at each phase, queue 

length of each lane, and number of vehicles served are estimated by the simulation model. 

The simulation model is run under two scenarios using peak traffic conditions. In the 

first scenario, the cycle length and splits remain unchanged during the whole simulation run. 

This case, where the VSA control strategy is disengaged, is essentially a pretimed signal 

control system. In the second case, the VSA signal control logic is engaged, thus the cycle 

splits are variable during a simulation run. The comparison of the average stopped delay 

resulting from the two cases determines if the VSA signal control strategy produces less 

stopped delay at an intersection. 

In further analysis, some of the vehicle attributes are changed in different simulation 

runs to find the effects of that particular attribute on the average stopped delay. For example, 

the sensitivity of intersection average stopped delay to an increase in truck service time (e.g., 

changing from three seconds to four seconds) is determined by two simulation runs. 

4.4 Validation of Simulation Results 

Validation can be defined as the process of reaching an acceptable level of confidence 

that the inferences drawn from the model are correct and applicable to the real-world system 
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being simulated (63, p. 133). A simulation model is a simplified version of an actual system. 

Thus, it is not expected that the model and the real system have identical behavior. 

There are different types of systems that can be modeled by simulation. A system 

that exists and is accessible, a system that exists but is not available for direct 

experimentation, or a system which does not yet exist (64, p. 154). The simulation model in 

this research is of the third kind. That is, it simulates the performance of AVSI which has not 

yet been deployed in a traffic signal control system. Though one may argue whether it is 

even possible to validate such a system, the observed model behavior should give some 

indication of how AVSI would perform if implemented at an intersection. 

Limited time and resources, preclude building a VSA traffic signal control facility to 

collect traffic data. Therefore, by validating the simulation model under a pretimed signal 

control system, a level of confidence can be established that indicates a similar level of 

confidence in the model outputs under the VSA signal control system. Confidence in the 

usefulness of the model can be established as new points of correspondence between the 

model and its actual state are found. For instance, it can be shown that cycle length and delay 

resulting from the simulation have the same relationship as that originally discovered by 

Webster (52, p. 13). 

In order to validate the simulation model under a pretimed signal control system 

environment, a delay study at the intersection of Lincoln Way and Duff Avenue (Ames, 

Iowa) was performed. This study provided data on the level of delay for each approach. 

There are a variety of methods for performing field measurement of intersection stopped 
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delay. The most common method of estimating intersection average stopped delay is based 

on direct observation of the number of stopped vehicles at frequent intervals (25, p. 71). The 

direct observation method of estimating average stopped delay at an intersection is presented 

in the 1985 Highway Capacity Manual (59, p. 9-71). 

The method requires two observers for each approach. One observer with a 

stopwatch counts stopped vehicles, while the second person maintains a volume count by 

counting vehicles as they cross the stopline. At first, the furthest extent of a standing queue 

is identified. This point is used as the limit of stopped vehicle counts. At a regular interval 

time of between 10 and 20 seconds, the number of vehicles stopped at the intersection are 

counted and recorded on the field sheet in the appropriate time slot. A minimum sample of 

60 measurements of stopped vehicles is recommended (68, p. 4.8). During the entire period 

of the study, a volume count is maintained by the second observer. At the end of the study 

period, the sum of the stopped vehicle counts and the total volume count of the approach are 

recorded in the appropriate boxes on the field form. The average stopped delay of each 

intersection approach can be calculated by using the following equation {59, p. 9-83): 

D = ̂  (4.1) 

where, 

D = average stopped delay; sec/veh, 
S Fi = sum of stopped vehicle counts, 
/= interval between stopped vehicle counts; sec, 
V = total volume observed during study period. 

The Lincoln Way and Duff intersection is controlled by a fully-actuated signal control 

system. However, an actuated signal control system at a peak traffic condition can be treated 
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as a pretimed system, since it is assumed that during a peak hour all the phases at an 

intersection reach maximum green. The delay study is conducted at the afternoon peak hour; 

thus, during the study the intersection is assumed to be functioning under a pretimed control 

system. Therefore, the stopped delay obtained through the field study is considered to be 

compatible with the simulation results obtained under the same traffic conditions. The actual 

intersection cycle length and cycle splits are used in obtaining the simulation stopped delay. 

4.5 VSA Traffic Signal Control Strategy 

VSA traffic signal control logic is a new strategy which has not yet been investigated. 

The VSA control strategy consists of two parts. In the first part of the strategy, based on 

advance traffic information, cycle split is updated periodically (i.e., every five minutes). The 

traffic information, assumed to be provided by AVSI, includes periodic traffic volume and 

percent of trucks. The cycle splits are determined by using an HCM equation (59, p. 9-67). 

In the second part of the VSA control logic, cycle split could be readjusted to possibly 

prevent slow-moving heavy vehicles from stopping at a red signal. Based on the VSA 

control strategy, trucks are given the first priority to clear an intersection; however, splits are 

not adjusted every time a truck is detected. The VSA signal control strategy examines other 

phases of the intersection before granting a green extension to a phase. The objective of this 

control logic is to increase the efficiency of the entire intersection by reducing overall delay. 

The two-part VSA signal control strategy is incorporated in the traffic signal control 

module of the simulation model. The next two subsections review this new traffic signal 

control system. 
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4.5.1 Part I - Periodic Cycle Split Adjustment 

Based on fluctuation of the total number of vehicles and truck percentages in a traffic 

stream, the first part of the VSA signal control strategy adjusts the cycle splits periodically. 

The assumed time period should be a multiple of an intersection cycle time, since a new 

cycle split can not be implemented at the middle of a cycle. Periods of 75,150,225, or 300 

seconds, for instance, are acceptable time periods for updating cycle splits of a 75 second 

cycle. 

An AVSI roadside reader, R,, is assumed to be located five minutes away from the 

stopline of each approach (see Figure 4.1). As a vehicle passes reader R, the reader records 

the type and arrival time of each vehicle. Table 4.2 presents a typical sample of AVSI traffic 

information which could be collected by a reader. The entries in this table are hypothetical, 

and are provided for better understanding of the data format. 

The assumed time period and assigned vehicle speed determine the distance from the 

roadside reader R, to the stopline. It is assumed all vehicles approach the intersection with a 

Table 4.2 Typical AVSI Traffic Information 

Arrival Time Type 

7 ;20; 3 5 Passenger Car 

7:25:36 Passenger Car 

7:26:40 Truck 

7:29:42 Passenger Car 

7:46:10 Truck 
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predefined, constant speed. An assumption of a five minute period and a vehicle speed of 30 

miles per hour results in a distance of 2.5 miles from a reader to a stopline. Although 

positioning £in AVSI reader 2.5 miles from an intersection seems to be a realistic distance in 

an ITS environment, a shorter distance might also be assumed. 

By the end of each five minute period, the roadside readers inform a local controller 

of the expected total number of vehicles and trucks which will be arriving at an intersection 

in the next five minutes. Upon receiving the data, a microprocessor-based controller 

immediately determines a new set of cycle splits. This procedure is repeated every five 

minutes. The part-I portion of the traffic signal control module shown in Figure 4.3 is 

zoomed out in Figure 4.4 to show this procedure graphically. 

Traffic Signal Control Module 

Part I - Periodic Split Adjustment 

Calculate 

Cycle Length 

Calculate 

Cycle Split 

TrafTic Signal 

Cycle 

i 

Traffic Flow 

Module 

End of 
Yes No 

Minutes 
i 

Part 11 y 

Split 

Readjustment 

at End of a Phase 

Figure 4.4 VSA Signal Control Logic - Part I Periodic Cycle Split Adjustment 
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As shown in Figure 4.4, initially, cycle length is determined by Webster's equation 

using estimated hourly average traffic volume and percent of trucks at an intersection. Once 

a new data set is provided, the cycle split is updated for the next five minutes. Cycle length 

remains unchanged all the time. The reason behind keeping cycle length constant will be 

explained later in this chapter. The following equations (52, p. 13; 59, p. 9-11,9-67) are used 

to determine cycle length and cycle split. 

C = \.5L+5 (4.2) 
i-S (j)/ 

i 

«. = ©,(§) C-S) 

where, 

s = soNUHyfgOAF (4.4) 
I. (he 

= ^ (4.5) 

C = cycle length, 
L = lost time per cycle, 
V = actual flow rate, 
s = saturation flow rate, 
(j),. = flow ratio for lane group i, 
gi = effective green time for lane group i, 
Xc = critical ^ ratio for the intersection, 
sq = ideal saturation flow rate per lane, usually 1800 pcphgpl, 
A/'s number of lanes in the lane group, 
fw = adjustment factor for lane width, 
fm = adjustment factor for heavy vehicles in the traffic stream, 
Q/1F= other adjustment factors. 

The flow ratio, (v/s)i, is considered to be a variable parameter in the VSA traffic 

signal control strategy. The variability of flow ratio, and thus the cycle splits, is the only 

factor which differentiates the first part of the VSA control logic from a pretimed signal 

control system. Despite the similarity between the two signal control systems, the VSA 
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control system provides an improvement in utilization of AVSI traffic information. The 

second part of the VSA control strategy could further enhance the signal control system 

through the readjustment of cycle splits during the five minutes time intervals. 

4.5.2 Part II - End of a Phase Cycle Split Readjustment 

The first part of the VSA signal control logic adjusts the cycle splits according to 

current traffic conditions. It is possible, however, that readjustment of the cycle splits at the 

end of a phase within the five minute intervals, may produce even less intersection delay. 

The objective of the second part of the VSA control strategy is to provide an optimum cycle 

split at an intersection, in order to minimize the stopping of slow-moving trucks at a red 

signal. It is believed that by facilitating the movement of heavy vehicles, the overall 

intersection delay is reduced. 

The periodic adjustment of cycle splits in the first part of the traffic control system 

depends on AVSI traffic information which is collected by the distant roadside reader, R,. 

The readjustment of cycle splits, however, is based on the data collected by two other AVSI 

readers located at each approach. As shown in Figure 4.1, reader Rja is posted in the vicinity 

of a point where a queue of vehicles usually reaches during a red phase, the other one, Rjb, is 

located upstream at about 20 seconds from reader 112,. 

During the five minute periods for which cycle splits remain unchanged, AVSI traffic 

data collected by Raa and Rjb readers are examined a few seconds (t^hk) before the end of each 

phase. The advance inspection of AVSI information provides ample time for a detected truck 

to stop safely if green time has to be terminated, The checking time (t^hk) is assumed to be 
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4.4 seconds which is determined based on vehicle's comfortable deceleration rate of 10 ft/sec^ 

(25, p. 41) and approaching speed of 30 mph. 

Upon examination of AVSI information, if a detected truck is not able to clear an 

intersection within the given green time, the second part of the VSA control strategy 

determines whether to readjust cycle split or to leave it as scheduled. Before the control logic 

reaches a decision, it goes through different levels of a decision-making process. The 

decision-making process involved in the second part of the control system is based on an 

heuristic approach, which is reviewed in the remainder of this section. 

Before proceeding, however, a few terms need to be defined. A phase which is green 

is called the current phase. All remaining phases of an intersection are called competing 

phases. The AVSI traffic information collected by the readers of a current phase is referred 

to as the current database. Data collected in competing phases are referred to as competing 

databases. 

At about 4.4 seconds (tch^) before the green light switches firom the current phase to 

the next competing phase, the current database of reader Rja is examined. If no truck is 

detected by reader the current database of reader Rjb is examined for possible detection 

of a truck which may arrive within the next 20 seconds. If again there is no truck detected by 

reader Rzb, the current phase green time is terminated as has been scheduled. However, if a 

truck is listed in either database, the VSA traffic control system starts its decision-making 

processes by checking the status of the competing databases. The flow chart presented in 

Figure 4.5 graphically shows the decision-making processes involved. This figure zooms in 
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on the part-II portion of the VSA traffic control system. The following rules represent 

different levels of decision-making processes shown in Figure 4.5. 

4.5.2.1 Rule 1 - Queue Length 

• IF the queue length of one of the competing phases, q^om»is less than a threshold value, 
qv, THEN the next level will be executed. Otherwise, cycle split remains unchanged. 

The purpose of the first rule is to make sure that there is no so-called "spillover 

condition" in any of the intersection approaches. The threshold value is determined based on 

the distance between two adjacent intersections. For example, a distance of 750 ft and 

average vehicle length of 25 feet, produces a threshold value of 30. 
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Figure 4.5 VSA Signal Control Logic - Part II End of a Phase Cycle Split Readjustment 
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4.5.2.2 Rule 2 - Degree of Saturation 

• IF the recent degree of saturation of the next competing phase, Sobs, is less than one, 
THEN, the next level will be executed. Otherwise, cycle split remains unchanged. 

The purpose of the second rule is to make sure that the possible green time extension 

would not cause a saturation condition in the next phase. The recent degree of saturation of 

the next competing phase can be defined as the degree of saturation created during the phase's 

last red time period. The degree of saturation is determined by the following equation {58, p. 

9-4): 

° RS] 
Where, 

Sobs = degree of saturation, 
V, = actual flow rate for group lane or approach i ;  vph, 
Si = saturation flow rate for group lane or approach i; vphg, 
gi = green time for group lane or approach i; sec, 
C = cycle length; sec. 

The saturation flow rate (Sj) in Equation 4.6 is determined according to the "direct 

observation" method suggested in 1985 Highway Capacity Manual {59, p. 9-73). The direct 

observation of saturation flow rate is designed to be conducted at an actual intersection; 

however, in this situation, the required data are directly obtained from the simulation model. 

According to this method, the time between the start of a phase green time and the time that 

the last vehicle in the queue is discharged, or the time that a phase ends, is measured. This 

time is then divided by the number of counted vehicles during that time period to obtain the 

saturation flow rate of the observed lane. The saturation flow rate is estimated by the 

following equation: 
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Si = 
3600 (sec/hr) 

(4.7) queue dischage lime OR phase green time (sec) 

counted vehicles during the period(veh) 

Once the saturation flow rate is determined, given the actual flow rate, green time and 

cycle length, the recent degree of saturation of the next competing phase is obtained by 

calculating Equation 4.6. 

4.5.2.3 Rule 3 - Extra Time 

• IF the next competing phase has any extra green time, tj^t, to spare, AND this is greater 
than the time that a detected truck needs to be discharged, t,f|„ THEN the current phase 
receives the requested green time extension. Otherwise, cycle split remains unchanged. 

Depending on whether a green time extension request comes from a detected truck by 

Rja or Rab readers, different expressions are used to determine the requested green time 

extension, t,ri(. If a green time extension is requested for a truck detected by the Rja reader, 

the requested time is determined by the following equation: 

t,^i^ = requested green time extension, 
dtveh = discharge time of a vehicle which is in service, 
TNOW = current simulation clock time, 
tin = the time that the last vehicle entered the intersection, 
dttrk = discharge time of a truck, 
J = position of the first detected truck in the queue, 
dtpc = discharge time of a passenger car, 
^chk = 4.4 sec; checking time. 

Equation 4.8 consists of four terms. The first term calculates the time a detected truck 

needs to reach the intersection. For calculating the value of this term, the location of the 

truck in the queue should first be determined. Once the position of the truck is determined by 

the value of J, the detected truck has to wait for J-1 number of passenger cars in front of it to 

be discharged before it enters the intersection. 

tirk ~ {l(^~ ^ dtpc] + [dtveh (TMOW tin)]"^ dt/rk} tchk 

where, 

(4.8) 
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The second term of Equation 4.8 determines the additional time that the detected 

truck, once it reaches the intersection, needs to stop for a vehicle in service to be discharged. 

The value of this term could be either the whole discharge time of a vehicle or a portion of its 

discharge time. In cases where a portion of a vehicle's discharge time is requested, a vehicle 

has already entered the intersection and is in the middle of hs service. The discharge of the 

vehicle in service (dtveh) is determined based on its type. 

The third term of the equation simply is a truck's discharge time which the detected 

truck needs to completely clear the intersection, once it reaches the stopline. By deducting 

the last term from the first three terms the requested green time extension is determined. If 

the obtained value is negative, the detected truck then needs no green time extension and will 

clear the intersection within the remaining 4.4 seconds (tchJ of the phase green time. 

In order to clarify the terms used in Equation 4.8, consider the following example. 

Assume at the time that the status of the reader R2a is examined (teh^), a truck which is the 

third vehicle in the queue is detected. Therefore a value of 3 is recorded for J. Since the first 

two vehicles in the queue must have been passenger cars, the time that the detected truck 

needs to reach the intersection is the total discharge time of the two passenger cars. Given a 

passenger car's discharge time of 2 seconds (dtp^) the detected truck therefore needs 4 seconds 

to reach the intersection (i.e., the equation's first term). Once the detected truck is at the 

stopline, it has to wait for the vehicle in service to clear or "release" the intersection. Assume 

the intersection is busy with a passenger car which has entered the intersection at 18 seconds 

(tj„). The simulation clock time (TNOW) indicates 18.5 seconds. Given the vehicle's 
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discharge time (dtvch) of 2 seconds, the detected truck needs to stop 1.5 additional seconds 

before it enters the intersection (i.e., the equation's second term). However, before the 

detected truck is being discharged, it needs 3 more seconds (dttf^) to clear the intersection 

(i.e., the equation's third term). Deducting the 4.4 seconds (tchk) from the numerical values 

calculated for each term, the detected truck needs 4.1 seconds (i.e., 4+1.5+3-4.4) of green 

time extension (t,,^) to clear the intersection. 

For calculating a green time extension of a truck that is detected by the Rjt reader, 

which will arrive within the next 20 seconds, again the position of the truck on the road 

should first be determined. Depending on the status of the queue at the intersection at the 

time that the detected truck will arrive, the following equations are used to determine the 

requested green time extension: 

where, 

t,rk = requested green time extension, 
dtioi = total discharge time of vehicles waiting in the next competing queue, 
J = position of the first detected truck in the queue, 
dtpc = discharge time of a passenger car, 
av = arrival time of the detected truck, 
TNOW = current simulation clock time, 
dtirk = discharge time of a truck, 
tchk = 4.4 seconds; checking time. 

The requested green time extension, t„|<, is determined by Equation 4.9 if there are 

other vehicles waiting in the queue to be discharged when a detected truck will arrive at the 

intersection. However, in the cases where no vehicles are stopped at the intersection, the 

detected truck clears the intersection with no stop delay. Therefore in these cases, the 

ttrk — [dtfot + (.(J~ 1) ̂  dtirk tchk 

t,rk = (flV - TNOW) - tchk 

(4.9) 
(4.10) 
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requested green time extension is determined by Equation 4.10 which is simply the time 

before the detected truck arrives minus 4.4 seconds, the checking time. 

In order to clarify the terms used in Equations 4.9 and 4.10, consider the following 

example. Assume the first truck detected by reader Rab is the second vehicle (J=2) on the 

road, that is, one (J-1) passenger car is in front of it. If the stopped vehicles at the 

intersection need a total of 6 seconds (dt,o,) to clear the intersection, the value of the first term 

in Equation 4.9 is 8 seconds (i.e., 6+(2*l)). Given the truck's discharge time of 3 seconds 

(dtiri,) and checking time of 4.4 seconds (t,|,|<), the detected truck therefore needs 6.6 seconds 

(i.e., 8+3-4.4) to clear the intersection. 

If, however, no vehicles are waiting at the intersection when the detected truck will 

arrive. Equation 4.10 is used to determine the requested green time extension. Assume the 

current simulation clock time (TNOW) indicates 45 seconds. A detected truck will arrive at 

50 seconds. Therefore, the detected truck in this case only needs 0.6 seconds (50-45-4.4) 

green time extension to clear the intersection. 

Once the requested green time is determined, it is compared to the extra green time of 

the next competing phase (te«). Extra green time is calculated by subtracting the total 

discharge time of vehicles waiting in the competing queue from the competing phase's 

assigned green time. This can be shown in the following equation: 

text — Scorn ~ dttot (4.11) 

where, 

text = extra green time of the next competing phase, 
gcom = assigned green time of next competing phase, 
dtioi = total discharge time of vehicles waiting in the next competing queue. 
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As an illustration, assume dt,o, and are 13 and 20 seconds, respectively. By 

inserting these values into Equation 4.11, the next competing phase is determined to have 

seven seconds of surplus green time (tg^,). If the condition defined in the third rule is 

satisfied, that is, text is greater than t^k, the requested green time extension can be awarded 

unconditionally to the current phase. However, if te„, is less than the requested green time 

extension, the next rule is examined. This rule ensures that the vehicles waiting in the next 

competing phase do not experience excessive delay. 

4.5.2.4 Rule 4 - Delay Index 

• IF delay index, DI, is less than a predefined threshold value, dv, THEN the current 
phase receives the requested extension time. Otherwise, the cycle split remains 
unchanged. 

The delay index is a weighted combination of passenger cars' and trucks' average 

stopped delay of the next competing phase, which has been built up during the phase's last 

red time. The delay index is defined by the following expression: 

DI = (Wpc X dpc) + (w,rk X d,rk) (4.12) 

DI= delay index; sec/veh, 
Wpc = assigned weight factor of passenger cars, 
Wtrk = assigned weight factor of trucks, 
dpc = p. cars' delay of the next competing phase during the phase's last red time; sec/veh, 
dtrk = trucks' delay of the next competing phase during the phase's last red time; sec/veh, 
TNOW = current simulation clock time, 
Vpc = observed volume of passenger cars during the next competing phase's red time; veh, 
Vtrk = observed volume of trucks during the next competing phase's red time; veh, 
atpc = total passenger cars' arrival time; sec, 
at,rk = total trucks' arrival time; sec. 

where. 

{Vpc^TNOm-atp,: 
(4.13) 

(4.14) 

(*pc — y 
J {yirk^TmW)-atui, 
dtrk = p-
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The weight factors used in Equation 4.12 are determined based on vehicles' travel 

time values. Trucks* travel time values are reported as about 2.7 times of those for passenger 

cars {69, p. 74; 70, p. 3-19,3-20). Running the simulation model with different combinations 

of weight factors also indicates that the weight factors of 0.25 and 0.75 are the appropriate 

factors for passenger cars and trucks, respectively. 

The other two parameters involved in delay index calculation are dp^ and dj^k, which 

are determined by using Equations 4.12 and 4.13. The numerators used in Equations 4.11 

and 4.12 are the total stopped delay that passenger cars and trucks are experiencing in the 

next competing phase, since the phase's last green time has ended. Dividing the total stopped 

delay by its associated number of observed vehicles determines the average stopped delay of 

passenger cars and trucks in the simulation model environment. 

In order to determine the delay index, DI, in Equation 4.10, Equations 4.11 and 4.12 

need to be solved first. Consider the following example: 

Assume, 

Vpc = 10 passenger cars, 
V,fi5 = 3 trucks, 
atpc = 43 seconds, 
at,ric = 27 seconds, and 
TNOW = 44 seconds. 

By applying these values in Equations 4.11 and 4.12, the numerators of these equations (i.e., 

total stopped delay values) compute to 397 and 105 seconds; respectively. Dividing these 

total stopped delay values by the associated number of observed vehicles, the average 

stopped delay of passenger cars (dpj and trucks (d,rk) since the last red signal of the next 
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competing phase are calculated to be 39.7 sec/veh and 35 sec/veh; respectively. Finally, by 

inserting the values of dpcand d„k and their assigned weight factors into Equation 4.10, the 

delay index is determined as 36.2 sec/veh. 

Once the delay index is calculated, it is compared to a predefined threshold value, dv. 

If delay index is less than dv, the current phase receives the requested green time extension. 

Therefore, the higher the value of dv is, the more chances the current phase has to receive 

green time extension. For example, a value of zero for dv, provides no chance for the current 

phase to receive a green time extension at this stage of the decision-making process. An 

appropriate value of dv is selected by running the simulation model under different dv values. 

Based on the obtained simulation results, a value of 15 is assigned to dv. 

If the condition stated in the fourth rule is satisfied, the current green time is extended 

for the amount of time which is requested. In the meantime, an equal amount of green time is 

subtracted from the next competing phase. Once the extension time is ended (i.e., 4.4 

seconds before the end of the phase), the procedure continues, again checking the current 

database of readers R2a and R2b for another truck. If there is a truck and the stated conditions 

are satisfied, the current green time is extended for the second time. The procedure is 

repeated until it violates any one of the stated rules. 

After the green light moves to the next competing phase from the current phase, the 

previous competing phase becomes the new current phase, and the old current phase now 

becomes one of the competing phases. If a truck is detected at the end of this new current 

phase, the green time extension now is requested from the next competing phase. In a 
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four-phase signal control system, for example, phase-1 requests green time extension from 

phase-2, phase-2 requests from phase-3, phase-3 requests from phase-4, and phase-4 could 

request green time extension from phase-1. The only restriction to this procedure is that at 

the last cycle of the defined period in the first part (i.e., 5 minutes), phase-4 is not permitted 

to request green time extension from phase-1, since a green time extension at this time would 

change the defined intersection cycle length, which, as stated before, needs to remain 

constant throughout the simulation run. 

4.5.3 Variable Splits versus Variable Cycle 

Based on the VSA traffic signal control logic, cycle splits are adjusted based on the 

fluctuation of traffic flows, while cycle length remains unchanged. The variable splits 

algorithm is chosen over the variable cycle algorithm (i.e., varying both cycle length and 

splits at the same time), because the defined five minute period needs to be a multiple of the 

cycle length. The simulation results, however, indicate that the variable splits algorithm 

produces less intersection delay. Although it may seem intuitive that a variable cycle option 

would reduce intersection delay, a thorough investigation has shown that, for the selected 

five minute period, the variable splits approach is better for a VSA traffic control system. 

The rationale behind this conclusion is discussed extensively in the next chapter. 
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CHAPTER 5 - APPLICATION 

A simulation model is developed to evaluate the applicability of AVSI traffic 

information at an isolated intersection. The computer listings of the simulation model are 

included in Appendix II. The AVSI traffic information utilized in this evaluation consists of 

vehicle types and arrival times. An important component of the simulation model is the VSA 

traffic signal control strategy, which is implemented in the traffic signal control module of 

the model. By utilizing AVSI traffic information, the VSA signal control system has been 

shown to be capable of improving signal timing at intersections by reducing stopped delay. 

This chapter includes six sections. The first section defines the case study employed 

to obtain the simulation results. The second section presents the simulation results indicating 

the superiority of the VSA traffic signal control logic over the pretimed signal control 

system. The third section investigates the reasons behind employing a variable splits 

algorithm rather than a variable cycle algorithm in the simulation model. The fourth section 

describes the procedures involved in validating the simulation model. The fifth section 

examines sensitivity of the intersection average stopped delay to some of the attributes and 

variables used in the simulation model. For example, the effect of truck percentages changes 

on the average stopped delay at an intersection are studied in this section. The last section 

includes concluding remarks. 

5.1 Case Study 

The simulation model is developed based on an isolated intersection as shown in 

Figure 5.1. This is a four-leg, four-phase intersection with phase patterns resembling the 



www.manaraa.com

66 

intersection of Lincoln Way and Duff Avenue in Ames, Iowa. The north bound is assumed 

to be phase-1. Turning counterclockwise, west bound is phase-2, south bound is phase-3, 

and the east bound is phase-4. Each intersection approach has two lanes. The outer lane is 

used for left turning and through traffic. The inner lane is used for right turning and through 

traffic. 
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Figure 5.1 Four-Leg, Four-Phase Isolated Intersection 

The average hourly volume of traffic at the afternoon peak hour is assumed to be 600 

vehicles per hour (vph) on each approach. A rather high truck percentage of 30 percent is 

assumed in this case study, since the performance of a VSA control strategy can be better 

evaluated when a high number of trucks is present in the traffic flow. The assumed traffic 
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flow rate and truck percentage are used to calculate the intersection cycle length and its initial 

cycle split in the simulation model. 

It is assumed that AVSI roadside readers R,, R2b, and are posted upstream at about 

2.5 miles, 1200 feet, and 300 feet, respectively, from the stopline of each intersection 

approach. Initially, it is assumed that there are no vehicles present at the intersection or on its 

approaches. At to, the R, readers start detecting the approaching vehicles. At tj (i.e., five 

minutes after to), the first detected vehicle arrives at the intersection. At this time the R, 

readers transmit the current values of traffic flow rates and truck percentages which were 

detected during the past five minutes in each approach to the local traffic signal controller. 

Based on the received traffic information, the local controller determines a new optimum set 

of cycle splits, which will satisfy the upcoming traffic demand for the next five minutes. 

This procedure, which is defined in the first part of the VSA traffic control system, is 

repeated every five minutes. Thus, the local traffic signal controller is provided a chance to 

adapt its cycle split for the vehicles arriving in the next five minutes. 

Through the information received fi*om Rja and Rab readers, the traffic signal 

controller is provided other opportunities during the five minute period to readjust the cycle 

split at the end of each cycle phase. For example, if a truck is detected by any one of these 

readers, the local controller decides whether to readjust the cycle split to provide additional 

green time to the current phase, or leave it as it has been scheduled. This decision is based on 

the decision-making processes defined in the second part of the VSA traffic signal control 

logic. 
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5.2 AVSI Evaluation 

The AVSI performance at an intersection is evaluated by conducting a "before and 

after" study. In the absence of AVSI, the intersection is assumed to be operating under a 

pretimed control system. With the AVSI traffic information, however, the intersection is 

assumed to be operating under this new VSA signal control system. By comparing the 

results obtained from the simulation model run under the two described traffic signal control 

systems, the AVSI performance at an intersection is evaluated. 

The first part of the VSA traffic control strategy involves a mechanism that 

periodically informs a local controller regarding the upcoming traffic demand during the next 

five minutes. In order to capture this strategy in the simulation model, a pre-generator model 

(i.e., a limited version of the developed simulation model) is used to generate vehicles 

through each intersection approach for the entire simulation running period. The computer 

listings of the pre-generator model are included in Appendix III. 

Vehicle interarrival times are generated according to a negative exponential 

distribution with a mean of six seconds per vehicle, resulting in a flow rate of 600 vph. Once 

a vehicle is created it is classified as a passenger car or a truck. The next attribute identifies 

the vehicle direction, which determines if a vehicle will turn right or left or go through the 

intersection. This data is recorded on the separate files for each approach (i.e., files tl 1 .txt, 

tl2.txt, tl3.txt, and tl4.txt). As an illustration, Table 5.1 includes the information assigned to 

the first five vehicles generated for the north bound approach in the "tl 1 .txt" file. 



www.manaraa.com

69 

At the end of each five minute period, the number of observed vehicles and the 

percent of the detected trucks are calculated. For the purpose of calculating cycle splits, these 

values are converted to hourly volumes and truck percentages, which are recorded in file 

"t.txt". For example, Table 5.2 presents the data recorded for the first few periods in file 

"t.txt". 

Table 5.1 Data Assigned to Vehicles on North Bound Approach 

Arrival Time (sec) Type' Direction' 

0.01 1 3 

13.03 2 1 

29.59 2 3 

30.16 2 1 

32.81 1 1 

' 1 = Truck, 2 = Passenger Car 

^ 1 = Straight, 2 = Right, 3 = Left 

Table 5.2 Converted Traffic Flow Rates and Truck Percentages for Each Approach 

Time (min) North bound West bound South bound East bound 

5 564' (36%)' 576 (38%) 516(26%) 588 (29%) 

10 708(29%) 636(21%) 708 (32%) 888 (30%) 

15 396(21%) 516(19%) 600 (32%) 588 (37%) 

20 672 (36%) 588 (37%) 684 (32%) 720 (35%) 

25 624 (38%) 552 (24%) 540 (33%) 672 (29%) 

' Traffic flow rates 

' Truck percentages 
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Once the pre-generator model generates the data files, they are read by the simulation 

model. The simulation model is run under the two traffic signal control systems for 2 hours. 

In the first case, the simulation model is run under the pretimed traffic signal control system. 

In this case, the cycle length and cycle split are determined based on the traffic information 

provided in the case study (i.e., traffic flow rate 600 vph, truck percentage 30%). The cycle 

length and cycle split remain unchanged during the simulation run. The average stopped 

delay is calculated at the end of each five minutes period, as well as at the end of the 

simulation run period (i.e., two hours). The recorded average stopped delay is fiirther broken 

down to passenger cars, trucks, and intersection delay. 

In the second case, the simulation is run using the VSA traffic signal control logic. 

Initially, the intersection cycle length is calculated using the same traffic information used in 

the first case (i.e., traffic flow rate 600 vph, truck percentages 30%). Thus, the cycle lengths 

for the both cases are the same, and they are assumed to remain unchanged throughout the 

signal control operation. However, unlike the pretimed case, the VSA control system adjusts 

cycle splits according to the fluctuation of traffic volumes. 

Once the cycle length is determined, the cycle split is calculated using the traffic flow 

rates and truck percentages reported for the first five minute period. At the end of the period, 

a new cycle split is determined using the upcoming flow rate and truck percentage 

information. This procedure continues for every five minutes. During each five minute 

period, by engaging the second part of the VSA control strategy, the cycle split is readjusted 
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if necessary to provide extra green time for discharging the trucks detected at the or Rjb 

readers. 

Table 5.3 presents the average stopped delay resulting from the two traffic signal 

control systems at the end of the simulation run period. As these results indicate, the 

utilization of the AVSI traffic information in a traffic signal control system could provide 

reduced delay at intersections. Table 5.3 also includes the time that each vehicle could save 

in a VSA traffic control system during its travel through the intersection. Figure 5.2 shows 

that even during each five minute period the VSA control logic produces less intersection 

delay than the pretimed system. 

Table 5.3 Average Stopped Delay 

Average Stopped Delay (sec/veh) 

Truck Passenger Car Intersection 

Pretimed Control System 47.63 45.45 46.11 

VSA Control Strategy 33.07 36.47 35.45 

Time Saved by AVSI 14.56 8.98 10.66 

During the two hours run period, the simulation output shows that about 4,800 

vehicles are discharged fi-om the intersection. Thus, under the present case study, the VSA 

control logic could reduce approximately 5.8 hours of total stopped delay during the 

two-hour period at the intersection. The complete list of total time that passenger cars and 

trucks could gain in a VSA control system is included in Table 5.4. 
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Figure 5.2 Average Stopped Delay at End of Each Five minutes Period 

Table 5.4 Total Time Saved by VSA Traffic Control Strategy During a Two-hour Period 

Truck Passenger Car Intersection 

Time Saved by AVSI (sec/veh) 14.56 8.98 10.66 

Observed Vehicles (veh) 1,440.00 3,360.00 4,800.00 

Total Time Saved by AVSI (hour) 5.82 8.38 14.21 

A VSA traffic signal control strategy is also capable of reducing maximum stopped 

delay and queue length at an intersection. Table 5.5 includes a sample of these maximum 

values. As indicated in the table, the maximum stopped delay of trucks on the east bound 

approach, for instance, could be reduced by more than 93 seconds with a VSA traffic control 

system. Maximum queue length in the left lane of the same approach could also be shortened 

by eight vehicles. 
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Table 5.5 Maximum Stopped Delay and Queue Length 

Maximum Stopped Delay (sec) 

Pretimed Control System VSA Control Strategy 

Trucks in North bound 

Passenger Cars in West bound 

Trucks in East bound 

125.14 

143.41 

175.87 

103.51 

93.44 

81.92 

Maximum Queue Length (veh) 

Pretimed Control System VSA Control Strategy 

Right lane of West bound 

Left lane of South bound 

Left lane of East bound 

14 

15 

18 

8 

10 

10 

The reason why such positive outcomes are obtained is due to the adaptiveness of the 

VSA traffic control strategy. The VSA traffic control system not only adapts the cycle splits 

according to the fluctuation of traffic volume, it also adjusts cycle splits based on the 

performance characteristics of vehicles in the traffic flow. Although, trucks are given the 

priority to clear an intersection in order to experience less delay, passenger cars are the main 

beneficiary in a VSA traffic control system. This can be noted in Table 5.4, as the total time 

that passenger cars could save during a two-hour period in a VSA control system is greater 

than that for trucks. Based on these results, it is fair to conclude that facilitating of the 

movement of heavy vehicles in a traffic signal control system causes a reduction in overall 

intersection delay. 
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5.3 Variable Splits versus Variable Cycle 

There are different algorithms for signal timing adjustment which could be used in a 

traffic signal control system. According to a variable splits algorithm, only cycle splits are 

adjusted to accommodate the incoming traffic demand. However, when a traffic signal 

control system employs a variable cycle algorithm for adjusting its signal timing, both cycle 

length and cycle splits are adjusted. 

The VSA traffic control strategy employed in the current case study adopts a variable 

splits algorithm for its signal timing adjustment. The reason for choosing a variable splits 

algorithm in this study is because the time interval selected for the cycle splits adjustment 

(i.e., five minutes) should be an exact multiple of the cycle length since a new cycle split can 

not be implemented at the middle of a cycle. Therefore, a periodic change of cycle length 

may violate this requirement. For example, a time interval of five minutes is an adequate 

period for a cycle length of 75 seconds. However, if the cycle length is changed to 85 

seconds, the five minute period is no longer an exact multiple of the new cycle length. 

Moreover, the simulation results indicate that VSA control logic under a variable splits 

algorithm produces less intersection delay than under a variable cycle algorithm. 

Although the VSA control strategy is designed to employ a variable splits algorithm 

for its signal timing adjustment, the question of why a variable splits algorithm produces less 

intersection delay still remains. This question is answered by conducting a thorough 

investigation. It is found that a five-minute interval is a short time for using a variable cycle 

algorithm, since the calculated cycle length should either be significantly increased or 
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decreased to satisfy the previously defined requirement. Therefore, the new cycle length no 

longer holds its original optimum value to provide a best signal timing at an intersection. 

To understand how this conclusion (i.e., a five-minute interval is a short time for 

using a variable cycle algorithm) is reached, the simulation model is run assuming a zero 

truck percentage and under the two signal timing adjustment algorithms for one hour. The 

first run used a variable splits algorithm where cycle splits are adjusted every five minutes, 

while the cycle length remained unchanged. In the second simulation run under the variable 

cycle algorithm, both cycle length and cycle splits are adjusted at the end of each five 

minutes. Table 5.6 presents the average stopped delay obtained fi-om these two simulation 

runs. As indicated in this table, when the time interval for signal timing adjustment is five 

minutes, the variable splits algorithm provides less intersection delay than the variable cycle 

algorithm. 

Table 5.6 Average Stopped Delay - The Five-minute Time Intervals Case 

Signal Timing Adjustment Algorithm Intersection Delay (sec/veh) 

Variable Splits 25.95 

Variable Cycle 28.44 

In next round of simulation runs, the five minute period is changed to a one hour 

period, and the simulation model is run for 12 periods or 12 hours. For consistency, the same 

total traffic volumes generated for each five minute period are used to generate vehicle 

interarrival times for each one hour period of the second round of simulation runs. As in the 
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first round, the simulation model is run using the two signal timing adjustment algorithms. 

In the first run, cycle splits are adjusted at the end of each one hour, while in the second run, 

cycle length and cycle split are adjusted at the end of each one hour period. Table 5.7 shows 

the simulation results obtained from the second round of simulation runs. Unlike the 

previous case, as expected, variable cycle algorithm produces less intersection delay than the 

variable splits case. 

Table 5.7 Average Stopped Delay - The One-hour Time Intervals Case 

Signal Timing Adjustment Algorithm Intersection Delay (sec/veh) 

The reason for the discrepancy in the results obtained from the two rounds of 

simulation runs (i.e., the five minutes and one hour periods) can be explained by examining 

the calculated cycle length for each period. Tables 5.8 and 5.9 list the cycle lengths that are 

engaged in the first and second rounds of simulation runs under the variable cycle algorithm; 

respectively. These tables also include the actual values of cycle lengths. As indicated in 

these tables, the cycle lengths used differ from the values originally computed, since in some 

cases the cycle length might not be an interval that evenly divides into the designated 

periods. For example, in order to fit a cycle length of 55 seconds into a five minute period, 

the cycle length would have to be changed to either 50 or 60 seconds. 

Variable Splits 

Variable Cycle 

30.97 

29.58 
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Table 5.8 Cycle Length - The Five-minute Time Intervals Case 

Cycle Length (sec) 

Period Variable Cycle Actual 

1 50 45.13 

2 100 92.73 

3 43 40.81 

4 60 65.38 

5 50 50.51 

6 60 56.67 

7 50 47.22 

8 50 51.01 

9 50 54.26 

10 60 61.45 

11 43 43.59 

12 50 51.52 

Table 5.9 Cycle Length - The One-hour Time Intervals Case 

Cycle Length (sec) 

Period Variable Cycle Actual 

1 46.75 46.65 

2 92.31 90.13 

3 40.91 40.48 

4 64.29 63.16 

5 48.65 48.46 

6 52.94 52.41 

7 46.75 46.39 

8 50.71 50.58 

9 55.38 54.69 

10 66.67 66.59 

11 41.86 41.75 

12 52.17 51.91 
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The comparison between the cycle lengths listed in Tables 5.8 and 5.9 indicates that, 

in the case of five minute time interval, the cycle lengths used under a variable cycle 

algorithm deviate from their original optimum values by a larger margin than in the case of a 

one hour period. This is clearly shown in Figure 5.3, which compares the two cases by 

examining the absolute differences of the cycle lengths used in a variable cycle algorithm and 

their actual values. Therefore, the large deviations of the engaged cycle lengths from their 

actual values observed in the case of five minutes period explain the ability of a VSA traffic 

control system to generate a higher stopped delay under a variable cycle algorithm than under 

a variable splits algorithm at an intersection. 
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Figure S.3 Absolute Cycle Length Differences 
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5.4 Validation of the Simulation Model 

In this research a simulation model is developed that evaluates the applicability of 

AVSI in a traffic signal control system. According to the simulation results, a VSA traffic 

control strategy reduces intersection delay from the amount a pretimed system would 

produce. In order to establish an acceptable level of confidence that the obtained simulation 

results are correct, the simulation model is validated. 

The validation of the simulation model is accomplished in two parts. First, an 

adequate level of confidence in the simulation model is established by comparing the results 

obtained from a field study and the ones obtained from the simulation model. Second, the 

established level of confidence is reinforced by showing a similarity between the model 

outputs and the Webster's equation. 

5.4.1 Part 1 - Field Study 

In validating a simulation model, the simulation results need to be compared to the 

actual system being simulated. The actual system in this case is a hypothetical VSA traffic 

signal control facility which does not yet exist. However, when the procedures defined in the 

simulation model for the VSA traffic control strategy are disengaged, the model simulates a 

pretimed control system. Because a VSA traffic control facility does not currently exist, the 

simulation model could only validated under a pretimed traffic control system. The purpose 

of this partial validation of the simulation model is to build a similar level confidence in the 

results obtained under the VSA signal control logic. 
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The first step in vaUdating the simulation model is the field measurement of the 

average stopped delay produced under a pretimed control system at the intersection defined 

in the case study. While the intersection of Lincoln Way and Duff Avenue is operated under 

an actuated traffic control system, during the afternoon peak hour when the delay study was 

performed, the actuated system could be considered as a pretimed system since at a peak hour 

nearly all phases reach maximum green. The field measurement of stopped delay at the 

intersection was conducted by using the direct observation method (59, p. 9-71). 

The direct observation method requires two observers to collect data at each 

approach. One observer with a stopwatch counts stopped vehicles within the approach, while 

the other person maintains a volume count by counting vehicles as they cross the stopline. A 

time interval of 20 seconds was selected for recording the number of stopped vehicles. The 

study started at 4:30 PM and it lasted in one hour. Thus, a total of 180 stopped vehicle 

counts were taken for each approach. These measurements and traffic volume counts were 

recorded on the provided field sheets. Samples of provided field sheets are included in 

Appendix IV. 

The data collected are then entered into computer spreadsheets. A summary of these 

data are presented in Table 5.10. Given an interval time (I) of 20 seconds, and the 

information provided in first two rows of Table 5.10, the average stopped delay vehicles 

experienced during the one hour study at the intersection of Lincoln Way and Duff can be 

calculated by using Equation 4.1. The last row of the Table 5.10 shows the calculated 

average stopped delay of each approach. 
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Table 5.10 Summary of Data Collected During the Delay Study 

North bound West bound South Bound East bound 

Stopped Vehicles, 1,887.00 1,332.00 2,001.00 1,510.00 

Traffic Volume, V 665.00 633.00 665.00 630.00 

Avg. Stopped Delay, (sec/veh) 56.75 42.09 60.18 47.94 

The next step used to validate the simulation model is to run the model under a 

pretimed control system with the information given in Table 5.11, which was collected 

during the field study. The traffic flow rates, shown in Table 5.11, are adjusted to reflect 

unequal lane utilization. Using the lane utilization factor of 1.05, the actual flow rates are 

increased to reflect the flow rates in the lane with the highest utilization (59, p. 9-10). 

Other information collected during the study include the intersection cycle length and 

its cycle splits. Since the intersection is controlled under a fully-actuated system, the 

observed cycle lengths are not exactly equal to each other. However, during the peak hour 

when the study was conducted, the intersection is assumed to be operating under a pretimed 

Table 5.11 Observed Traffic information - Used in Simulation Model 

North bound West bound South Bound East bound 

Traffic Volume' 669.0 665.0 699.0 662.0 

Truck Percentage 0.9 0.8 1.5 2.9 

Right Percentage 11.3 25.9 12.9 15.9 

Through Percentage 59.1 42.8 66.9 47.8 

Left Percentage 29.6 31.3 20.2 36.3 

Adjusted volume - using a lane utilization factor of 1.05 
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control system. Therefore, an average value of 128 seconds is assumed for the cycle length. 

Moreover, the green time is assumed to be the same for each phase. 

With the data collected during the field study, the simulation model is run under ten 

different seeds (i.e., sampling methods for the simulation random-number generators) for one 

hour. Each seed generates a different random number sample which in turns generates 

different vehicles' interarrival times. Table 5.12 includes the average stopped delay obtained 

in each simulation run which shows no significant changes in the results obtained in each 

run. The mean values of the average stopped delay, calculated in the last row of Table 5.12, 

and the average stopped delay obtained in the field study are included in Table 5.13 to make 

an easy comparison between the two methods. 

Table 5.12 Average Stopped Delay (sec/veh) - Different Seeds 

Seed North b. Westb. South b. East b. Intersection 

4 53.05 47.92 49.97 50.65 50.46 

15 55.55 46.53 48.55 50.14 50.31 

52 55.41 49.57 54.11 51.85 52.87 

342 51.42 47.56 53.95 46.79 50.07 

845 52.36 47.72 52.12 46.52 49.82 

5,896 52.74 47.01 55.89 54.69 52.67 

13,571 55.04 46.93 51.21 48.57 50.54 

18,777 52.93 50.09 52.47 47.35 50.76 

55,555 55.92 47.68 54.91 48.35 51.86 

697,321 50.56 50.59 48.54 50.39 50.01 

Mean 53.49 48.16 52.17 49.53 50.94 
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Table 5.13 Average Stopped Delay (sec/veh) - Validation Results 

North b. West b. South b. East b. Intersection 

Delay Study 56.75 42.09 60.18 47.94 51.74 

Simulation Model 53.49 48.16 52.17 49.53 50.94 

While the average stopped delay obtained from the two methods do not match 

exactly, they are close enough to establish a level of confidence that the model is capable of 

simulating an intersection operating under a pretimed traffic control system. The confidence 

in the simulation model yields a similar level of confidence in the model outputs obtained 

under a VSA traffic control strategy. 

As stated earlier the simulation model and the actual system being simulated are not 

expected to have identical outputs. In addition to potential human error occurring during 

field data collection, other reasons for the discrepancy in the results obtained from the two 

methods include the followings: 

• the assumption of pretimed control system for the intersection, 
• the assumption of a lane utilization factor, and 
• the assumption of a traffic arrival pattern. 

The potential errors introduced by these three assumptions are discussed below. 

5.4.1.1 Traffic Control System 

Treating an actuated traffic control system during peak, traffic conditions as a 

pretimed system may not accurately represent the intersection under study. While most of 

the phases reached maximum green time during the field observations, there were times that 

different cycle lengths and splits were observed. In order to show the effect of cycle length 
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changes on the average stopped delay, the simulation model is run using various cycle 

lengths observed at the intersection. Figure 5.4 indicates that stopped delay is sensitive to the 

cycle length changes. Therefore, using an average cycle length and a constant green time in 

the simulation model to approximate a pretimed system in the simulation could be a potential 

reason for the differences between resuhs obtained. 

40 

Cycle Length (sec) 

Figure 5.4 Intersection Average Stopped Delay - Different Cycle Length 

5.4.1.2 Lane Utilization Factor 

A lane utilization factor of 1.05, suggested by 1985 Highway Capacity Manual {58, p. 

9-10) for a 2-lane approach, was used for each approach. This is an estimated value which 

may not be applicable to all four approaches of the intersection. An estimation of lane 

utilization factor, based on the total number of stopped vehicles observed in each lane. 
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indicates that the lane utilization in each approach could be different. Using the total number 

of stopped vehicles presented in Table 5.14, and the following expression, a different lane 

utilization factor can be estimated for each approach. 

LUF=^^;X>r (5.1) 

where, 

LUF = estimated lane utilization factor, 
X = total number of stopped vehicles in the lane with the higher utilization, 
Y = total number of stopped vehicles in the lane with the lower utilization. 

Table 5.14 Observed Total Stopped Vehicles at the Intersection 

North bound West bound South bound East bound 

In lane Out lane In lane Out lane In lane Out lane In lane Out lane 

880 1,007 652 680 743 1,258 681 829 

Table 5.15 lists the lane utilization factors calculated from Equation 5.1, Using these 

calculated lane utilization factors, a different stopped delay value can be obtained for each 

approach. Figure 5.5 compares the average stopped delay obtained by a different set of lane 

utilization factors (i.e., calculated and suggested presented in Table 5.15) with the field 

average stopped delay. This figure indicates the effect of different lane utilization factors on 

the resulting average stopped delay at an intersection. Therefore, using the inappropriate lane 

utilization factors in the simulation model could be the second potential reason for 

discrepancies of the results. 
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Table 5.15 Different Sets of Lane Utilization Factors 

North b. West b. South b. East b. 

Suggested 

Calculated 

1.05 

1.07 

1.05 

1.02 

1.05 

1.26 

1.05 

1.09 

• Field Study ^ Suggested • Calculated 

80 I 

West South 
Intersection Approach 

Figure 5.5 Intersection Approach Avg. Stopped Delay - Different Lane Utilization Factors 

5.4.1.3 Traffic Arrival Pattern 

The vehicle interarrival times generated by the negative exponential distribution in 

the simulation model may not exactly represent the actual traffic flow at the intersection. 

Using different vehicle interarrival times in the simulation model would generate different 

values for the resulting stopped delay. Thus, the dissimilarities between the observed vehicle 

interarrival times and the ones generated by the simulation model could be the third potential 

reason for obtaining different results. 
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5.4.2 Part 2 - Reinforcing the Simulation Validation 

The established level of confidence in the simulation model can be reinforced by 

showing a similarity between the model's outcomes and the Webster's equation. The 

procedure used in the simulation model for obtaining stopped delay at an intersection is 

different from the Webster's equation, however, it can be shown that both models provide a 

similar relationship between stopped delay and cycle length. The stopped delay resulting 

from the simulation model is the measurement of the time that each single vehicle spends in 

the system, from its point of entry to the point that it leaves the intersection. In Webster's 

case, however, stopped delay can simply be calculated by solving the stopped delay equation, 

presented in 1985 Highway Capacity Manual (59, p. 9-18). 

Webster studied the effect of cycle length changes on average delay at an intersection. 

He developed a graph showing a relationship between the average delay and cycle length (32, 

p. 13). This graph indicates that the minimum average delay occurs at an optimum value of 

cycle length. However, at lower or higher values of cycle lengths, the intersection average 

delay increases. 

In order to recreate the Webster's graph, the stopped delay equation is coded into the 

simulation model. In order to show the similarity between the average stopped delay resulted 

from the simulation model and the ones obtained from the stopped delay equation, the 

simulation model is run with different cycle lengths under the defined case study. With the 

assumption that there are no trucks in the traffic flow, the simulation model is run for one 

hour. At the end of each run, the average stopped delay resulting from the two procedures 
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along with the engaged cycle length are recorded. Figure 5.6 graphs the result of 20 

simulation runs showing the effect of cycle length changes on the average intersection 

stopped delay. The graphs obtained are not plotted on the same scale, that is, minimum 

stopped delay occurs at different cycle length in the two models. However, by considering 

the differences between the two procedures, they are similar enough to reemphasize the 

established level of confidence in the simulation model. 

Simulation Model Webster Delay Equation 
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Figure 5.6 Average Stopped Delay versus Cycle Length 

5.5 Average Stopped Delay 

This section examines the sensitivity of the average stopped delay at an intersection 

controlled by a VSA traffic control system, with respect to the changes of following 

attributes and variables: 
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• truck percentage 
• traffic flow rate 
• truck discharge time 

In this part of the analysis the simulation model is run under the defined case study 

while the questioned attribute or variable changes in each simulation run. The simulation 

running period is set for one hour for the first two attributes and two hours for the last one. 

The changes in average stopped delay are defined in terms of the time that vehicles could 

save at an intersection controlled by a VSA traffic control logic as compared to a pretimed 

system. The stopped delay reduction or the time saved by an engagement of a VSA control 

strategy at an intersection is determined by taking the average stopped delay resulting from a 

pretimed system fi-om the one produced by a VSA control strategy. The remainder of this 

section examines the effect of each one of these parameters changes on the average stopped 

delay at an intersection. 

5.5.1 Truck Percentage 

As the number of trucks increase in a traffic flow, vehicles experience additional 

delay during their travel. However, the amount of this added delay may not be the same in 

all traffic signal control systems. For example, the lack of signal timing adjustment in a 

pretimed control system generates a higher delay than a VSA control strategy at an 

intersection. Figure 5.7 shows that a pretimed control system does not perform as well as a 

VSA control strategy at high truck percentages, thus vehicles save more time in a VSA traffic 

control system. Figure 5.7 also indicates that even at a truck percentage of zero, each 

passenger car could save as much as three seconds at an intersection operated under a VSA 

control system. 
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Figure 5.7 Travel Time Saved - Changing Truck Percentages 

5.5.2 Traffic Flow Rate 

Intersection stopped delay is also sensitive to the traffic flow rate. Figure 5.8 shows 

that, a VSA control system could save as much as 27 seconds of delay compared to a 

pretimed control system for each vehicle at an intersection, when traffic flow rate reaches to 

700 vph in each approach. At flow rate of 700 vph, Figure 5.8 indicates that because of 

oversaturation condition a pretimed system experiences a lot more difficulty to handle the 

traffic flow at an intersection. 

As shown in Figures 5,7 and 5.8, the increment of traffic flow rates and truck 

percentages at an intersection also increases the time that vehicles could save in a VSA 

controlled intersection. This hypothesis supports the conclusion reached in another study (3). 
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The advantage of adaptive control strategy over other types of traffic control systems is small 

or nonexistent under light traffic flow conditions. 

5.5.3 Truck Discharge Time 

This study used a conservative estimate of the time needed for a truck to clear an 

intersection. The time used is 1.5 times the discharge time of a passenger car. However, by 
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Figure 5.8 Travel Time Saved - Changing Traffic Flow Rates 

changing the truck's discharge time from three seconds to four seconds (i.e., two times the 

discharge of a passenger car), Figure 5.9 shows that a VSA traffic control system could 

reduce intersection stopped delay substantially. In this case, the total number of trucks 

observed during the two hours simulation run (i.e., 1,440 trucks), could save more than 18 
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hours in a VSA traffic control system. Therefore, in an actual traffic control system where 

trucks may take more time to clear an intersection, a VSA control logic would be a valuable 

tool to reduce traffic delay at an intersection. 

5.6 Concluding Remarks 

It has been shown that VSA traffic control logic is capable of reducing stopped delay 

at an isolated intersection. As Figure 5.10 indicates the first part of the VSA control strategy 

has a larger contribution in reducing intersection stopped delay. As shown in this figure, 

passenger cars only receive a small portion of stopped delay reduction from part two of the 

control strategy. This may be because this part may only adjust signal timing for trucks. 

With trucks, however, part two could reduce an additional 5.62 seconds of stopped delay per 

truck. This contributes to more than 38 percent of the total trucks' stopped delay reduction. 
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Figure 5.9 Travel Time Saved - Changing Trucks' Discharge Times 
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Figure 5.10 Travel Time Saved - The Two Parts of VSA Traffic Signal Control Strategy 

The decision-making processes involved in the second part of the VSA control logic 

are responsible of providing a logical decision whether to extend a green time or leave it as it 

has been scheduled. Most of the requested green time extensions are granted when the next 

competing phase has extra green time to lend. Otherwise, the green time extension requests 

are transferred to the delay index level, where only a few requests are granted. This indicates 

that delay index is an additional safety measure in the VSA control logic which ensures that 

vehicles waiting in the next competing phase do not experience excessive delay. 

Another feature of the VSA control strategy is the detection of trucks which may 

arrive within the next 20 seconds. If no truck is detected at Rz, readers (see Figure 5.1), the 

VSA control logic checks to see if any truck is detected at Rjb readers. The simulation results 
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indicate that not many trucks receive green time extensions at this stage. In this case, the 

requested green time extensions are often greater than the next competing phase's extra green 

time, since the detected truck has not yet arrived. These long green time extension requests 

make it difficult for the next competing phase to lend the requested green time. The 

simulation results, however, indicate even the few observed cases where the next competing 

phase provides its surplus green time to a detected truck which will arrive, for example, in 10 

seconds, have noticeably reduced truck's stopped delay at the intersection. 
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CHAPTER 6 - CONCLUSIONS 

AVSI is a generic name for advanced vehicle detection systems. It is assumed that 

AVSI is capable of detecting vehicles and providing vehicle specific information. In the 

application of AVSI to traffic signal control systems, AVSI is assumed to provide types and 

arrival times of the approaching vehicles to a local microprocessor-based traffic signal 

controller. Based on the AVSI traffic information, the controller then adjusts its signal 

timing to reduce intersection delay. 

The purpose of the research is to explore the potential benefits of AVSI vehicle 

specific information in a traffic signal control system. To limit the scope of the research, the 

benefits of use of AVSI traffic information are evaluated at a four-leg, four-phase isolated 

intersection, shown in Figure 5.1. Future research may look at the benefits of AVSI in traffic 

signal control systems. 

A microscopic simulation model is developed to evaluate AVSI performance at an 

isolated intersection. An important element of the simulation model is the development of a 

VSA traffic signal control strategy. The VSA traffic control system adjusts the signal timing 

based on AVSI traffic information. The objective of VSA control logic is to provide 

optimum cycle splits at an intersection, in order to minimize the stopping of slow-moving 

heavy vehicles at a red signal. 

The simulation results indicate that through the use of AVSI traffic information a 

VSA control strategy is capable of reducing average stopped delay of vehicles at the 

intersection. Compared with pretimed control systems, it is found that average stopped delay 
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of trucks and passenger cars at the isolated intersection is reduced by 14.56 and 8.98 second 

per vehicle, respectively. 

This research also found that VSA control logic is capable of reducing maximum 

stopped delay and queue length at the intersection. In one particular scenario, the obtained 

simulation resuhs indicate that the maximum stopped delay of trucks on an approach is 

reduced by more than 93 seconds. On the left lane of the same intersection approach, the 

simulation results show that maximum queue could also be shortened by eight vehicles. 

The benefits of AVSI are more apparent in a traffic control system with high traffic 

volumes and increasing truck percentages. It has been shown, however, that even at zero 

truck percentage in a traffic flow rate of 600 vph per intersection approach in the case study, 

each passenger car could save as much as 2.73 seconds when a VSA traffic control system is 

used. 

The logic involved in a VSA control strategy not only could alleviate the drivers' 

frustration by reducing intersection stopped delay, it also reduces vehicles' travel times. 

Assxmiing a value of 16.25 dollars per hour for the travel time savings of a larger semi-truck 

(JO, p. 3-20), the simulation results of the case study indicate that each truck could save about 

6.6 cents in a VSA traffic controlled intersection. Therefore, 1,440 trucks observed during 

the two hour simulation run period could save a total of 94 dollars in a VSA control system. 

The truck travel time savings in a VSA signal control system is calculated based on 

the assumption of a conservative average discharge time of three seconds for each truck. In 

an actual intersection, however, the discharge time of trucks could vary based on the position 
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of a truck in a queue. A trucic at the head of a queue will obviously take more time to clear 

an intersection after the signal turns green than a truck in the fifth position will. Therefore, 

by assuming a more realistic average discharge time for each truck (i.e., 4 seconds), it is 

found that VSA control logic could reduce intersection stopped delay substantially. With the 

assumption of 4 seconds discharge time for each truck, the simulation model results indicate 

a 18 hour travel time savings for the 1,440 trucks observed during the two hour run period in 

a VSA traffic controlled intersection. Assuming an hourly truck travel time savings of 16.25 

dollars, each truck saves 20 cents which adds up to more than 292 dollars savings for all 

trucks during a two hour peak period. 

The application of AVSI in a traffic signal control system has been presented in its 

simplest form in this research. The vehicle travel time savings in a VSA traffic signal 

controlled intersection can of course be multiplied, if AVSI is applied to intersections in an 

arterial or a network system. The present version of the simulation model is developed for 

the defined case study; however, the model's flexibility allows it to be enhanced to simulate a 

more complex traffic control system. For example, inclusion of additional intersections 

would make the model capable of evaluating AVSI benefits at an arterial. 

The system evaluated in this research does not yet exist; however, with the emphasis 

of ITS technology on ATMS it may not be far fi-om reality that in the next few years the 

concept of this research is actually applied. The major obstacle in implementing AVSI in 

traffic control systems at this time is not related to the technical adequacy of AVSI; rather, it 

is the inadequacy of the existing traffic control systems (i.e., pretimed and actuated systems) 
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which are not designed to utilize additional information that AVSI is providing. The 

development of the VSA control strategy in this research can be considered a step in the 

actual implementation of AVSI in traffic control systems. ITS technology is expected to 

facilitate the further research required for actual implementation of AVSI in traffic control 

systems. 

6.1 Future Studies 

The quality of this research can be improved by enhancing the simulation model to 

better emulate the traffic signal control system under study. The following suggestions will 

help improve the simulation model: 

6.1.1 Additional AVSI Vehicle Specific Information 

The VSA control logic used in the current version of the simulation model only 

considers arrival times and types of vehicles (i.e., trucks and passenger cars) in its signal 

timing adjustment. The consideration of other AVSI vehicle specific information such as 

acceleration-deceleration rate, speed, weight, and size of vehicles may provide a better 

decision-making base for a VSA control strategy to adjust cycle splits more appropriately, 

because the signal timing adjustment in a VSA control strategy is based on vehicle 

performance. In addition, classifying vehicles into more classes may also provide an 

improved decision-making base for VSA control logic. Thus, the more detailed the 

information provided to a VSA control system, the better it could perform at intersections. 
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6.1.2 Car-following Technique 

The simulation model could further be enhanced when a car-following technique is 

added to the traffic flow module of the model. Using the acceleration-deceleration rate of 

vehicles, a car-following model is capable of considering the interactions between vehicles in 

a traffic flow. If, for example, a leading vehicle decelerates, the following vehicle also 

decelerates. Although the technique used in this simulation model is an appropriate approach 

for simulating traffic flows at intersections, a car-following model seems to better capture the 

movement of vehicles on the intersection approaches. 

6.1.3 AVSI in Traffic Signal Control systems 

The application of AVSI to an arterial or a network system would require to examine 

a traffic control system with more than one intersection. This task could be begun with a 

simple case study evaluating AVSI at two adjacent intersections. In this case, a VSA control 

strategy should not only adjust the cycle splits, it should also be capable of adjusting the 

offset time of intersections. Once a model is built for two adjacent intersections, it could be 

further enhanced to include more intersections to simulate an arterial or a network system 

with a higher degree of complexity. 

6.1.4 Variable Discharge Time 

The present version of the simulation model considers constant discharge times for 

processing vehicles through the intersection. Assigning different discharge times based on 

the position of the vehicles in the queue, however, would provide a better estimation for the 

times that vehicles need to be discharged, once they arrive at the intersection. Because of 
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trucks' low acceleration rates, a truck positioned at the head of a queue requires more 

discharge time than a passenger car does. In the case of variable discharge times, therefore, 

based on the location of vehicles in the queue appropriate discharge times are assigned to the 

vehicles. The assigned discharge times, however, should be changed if vehicles remain in 

the queue after the green time is terminated. If, for example, a vehicle which is assigned a 

seventh vehicle discharge time can not clear the intersection with the provided given green 

time, based on its new position in the queue a new discharge time will be assigned to the 

vehicle. 
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APPENDIX I - EXPONENTIAL DISTRIBUTION 

For Poisson-distributed arrivals, p(n), the probability of exactly n vehicles arriving in 

any t second interval, is given by {61, p. 353): 

(A.1) 

where, 

^i = Xt = average number of vehicle arrivals in time t, 
'k = j = mean rate of arrivals per unit time interval, 
V = total volume of vehicles arriving during time T. 

If no vehicles arrive in time t, then there must have been a gap or time headway of at 

least t second(s) between successive vehicles. Therefore, the probability of a headway h 

being greater than or equal to t is: 

PQi > 0 = e~'^' (A.2) 

Because of the mathematical form of this distribution, it is often termed the negative 

exponential distribution. 
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APPENDIX II - SIMULATION PROGRAM LISTINGS 

Simulation Model - MODEL 

Lincoln Way and Duff Avenue Intersection 

;Trafnc Signal Control Module 

BEGIN; 

CREATE; 

ASSIGN: StartTime=TNOW; 

ASSIGN: ChkTime=Spd/Decel; 

;Saturation Flow Rates 

ASSIGN: 
SatFlowl =2* 1800*TF(hv%,Truck% 1): 
SatFlow2=2* 1800*TF(hv%,Truck%2): 
SatFIow3=2* 1800*TF(hv%,Truck%3): 
SatFlow4=2* 1800*TF(hv%,Truck%4): 
VoverSl=ActFlowl/SatFlowl: 
VoverS2=ActFlow2/SatFlow2: 
VoverS3=ActFlow3/SatFIow3: 
VoverS4=ActFlow4/SatFlow4; 

;Cycle Length Calculation 

ASSIGN: 
CycleLength=((l .5*LostTinie)+5)/ 

(1 -(VoverS 1 +VoverS2+VoverS3+VoverS4)); 

;Keeping Track of Niunber of Cycle in each period 

ASSIGN: Multi=l; 
Add ASSIGN: 

Multi=Multi+l: 
Adj=CycleLength*Multi; 

BRANCH,!: 
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IF, Adj .GT.Period 1 ,Subs: 
ELSE,Add; 

Subs ASSIGN: 
Multi=MuIti-l: 
CycleLength=((Periodl-(CycleLength*Multi))/Multi)+CycleLength; 

;Selection of AVSI or Non AVSI System 

BRANCH,!: 
IF,Option==0, AVI: 
ELSE,NoAVI; 

;In an AVSI System Traffic Volume and Truck Percentages Varies 

AVI READ, F,FREE: ActFlowI,ActFIow2,ActFIow3,ActFlow4, 
T ruck% 1 ,T ruck%2 ,Truck%3 ,Truck%4; 

ASSIGN: 
SatFlowl=2* 1800*TF(hv%,Truck%l): 
SatFIow2=2* 1800*TF(hv%,Truck%2): 
SatFlow3=2* 1800*TF(hv%,Truck%3): 
SatFlow4=2* 1800*TF(hv%,Truck%4): 
VoverSl=ActFlowl/SatFlowl: 
VoverS2=ActFlow2/SatFlow2: 
V overS3=ActFlow3/SatFlow3: 
VoverS4=ActFlow4/SatFlow4; 

;Cycle Splits Calculation 

NoAVI ASSIGN: 
Xc=(VoverS 1 +VoverS2+VoverS3+VoverS4)*CycleLength/ 

(CycleLength-LostTime): 
Green 1 =V overS 1 * (CycleLength/Xc): 
Green2=V overS2* (CycleLength/Xc): 
Green3=VoverS3 *(CycleLength/Xc): 
Green4=V overS4* (CycleLength/Xc); 

;Webster Delay Equation 

; ASSIGN: 
; Cap 1 =SatFlow 1 * (Green 1 /CycleLength): 
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Cap2=SatFlow2*(Green2/CycleLength): 
Cap3=SatFlow3*(Green3/CycleLength): 
Cap4=SatFlow4*(Green4/CycleLength): 
X1 =ActFlow 1 /Cap 1 : 
X2=ActFlo'w2/Cap2: 
X3=ActFlow3/Cap3; 
X4=ActFlow4/Cap4: 
Delay 1 =((0.3 8*CycleLength)*((( 1 -(Green 1 /CycleLength))* *2)1 

(1 -((Greenl/CycleLength)*Xl))))+ 
(173*(Xl**2)*((Xl-l)+((((Xl-l)**2)+(16*(Xl/Capl)))**0.5))): 

Delay2=((0.3 8 * CycleLength)* (((1 -(Green2/CycleLength))* * 2)1 
(1 -((Green2/CycleLength)* X2))))+ 
(173*(X2**2)*((X2-l)+((((X2-l)**2)+(16*(X2/Cap2)))**0.5))): 

Delay3=((0.38*CycleLength)*(((l-(Green3/CycleLength))**2)/ 
(l-((Green3/CycleLength)*X3))))+ 
(173*(X3**2)*((X3-l)+((((X3-l)**2)+(16*(X3/Cap3)))**0.5))): 

DeIay4=((0.38*CycleLength)*(((l-(Green4/CycleLength))**2)/ 
(1-((Green4/CycleLength)*X4))))+ 
(173*(X4**2)*((X4-l)+((((X4-l)**2)+(16*(X4/Cap4)))**0.5))): 

WebDelay=((Delay 1 * ActFlowl )+(Delay2* ActFlow2)+ 
(Delay3*ActFlow3)+(Delay4*ActFlow4))/ 
(ActFIowl+ActFlow2+ActFlow3+ActFlow4); 

Traffic Signal Timing 

ASSIGN; CPh=l; 

Cycle QUEUE, DumlQ; 

PREEMPT: PhaseTR2; 
PREEMPT: PhaseTL2; 

East, T_R Red 
East, T_L Red 

PREEMPT: PhaseTR3; 
PREEMPT: PhaseTL3; 

South, T_R Red 
South, T_L Red 

PREEMPT: PhaseTR4; 
PREEMPT: PhaseTL4; 

West, T_R Red 
West, T_L Red 

DELAY: Greenl-ChkTime-TimeNeedT; 

;PART II of the VSA Traffic Signal Control Strategy 
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BRANCH,!: 
IF,PARTII=2.AND.Option==0,PIIl: 
ELSE,Finel; 

Pill ASSIGN: 
K=l: 

NewG 1 =Greenl -TimeNeedT: 
TimeNeedT=0; 

Morel BRANCH,!: 
IF,NQ(PhaseTR2Q).GT.440.0R.NQ(PhaseTL2Q).GT.440.0R. 
NQ(PhaseTR3Q).GT.440.0R.NQ(PhaseTL3Q).GT.440.0R. 
NQ(PhaseTR4Q).GT.440.0R.NQ(PhaseTL4Q).GT.440,Fine!: 
IF,NQ(PhaseTRl Q).GE. JR2a,QSrch 12: 
IF,NQ(PhaseTLl Q).GE. JL2a,QSrchl 3: 
ELSE,Condl; 

QSrc!il2 SEARCH, PhaseTR!Q,JR2a: VehType=l; 

BRANCH,!: 
IF,J.GT.0,J2al2: 
IF,NQ(PhaseTL 1 Q).GE.JL2a,QSrchl 3: 
ELSE,Condl; 

J2a!2 ASSIGN: JR2a=J+l: NEXT(QTrkl2); 

QSrchl3 SEARCH, PhaseTL!Q,JL2a: VeliType==l; 

BRANCH,!: 
IF,J.GT.0,J2a!3: 
ELSE,Condl; 

J2a!3 ASSIGN: JL2a=J+l: NEXT(QTrkl3); 

Cond! BRANCH,!: 
IF,NR(ReaderTRl)==l.AND.TypArLogl2(2)==! 

.AND.TagR==0,Busyl2: 
IF,NR(ReaderTL 1 )=! .AND.TypArLogl 3(2)=! 

.AND.TagL=0,Busy 13: 
IF,NQ(ReaderTRl Q).GE. JR2b,QSch! 2: 
IF,NQ(ReaderTL 1 Q).GE.JL2b,QSchl 3: 
ELSE,Finel; 
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QSchl2 SEARCH, ReaderTRlQ,JR2b: VehType=l 
.AND.ArrTime.LE.TN0W-TravTime+R2b; 

BRANCH,!: 
IF,J.GT.0,J2bl2: 
IF,NQ(ReaderTL 1 Q).GE. JL2b,QSchl 3: 
ELSE,Finel; 

J2bl2 ASSIGN: JR2b=J+l: NEXT(QTkl2); 

QSchlS SEARCH, ReaderTLlQ,JL2b: VehType==l 
.AND.ArrTime.LE.TN0W-TravTime+R2b; 

BRANCH,!: 
IF,J.GT.0,J2bl3: 
ELSE,Finel; 

J2bl 3 ASSIGN: JL2b=J+l: NEXT(QTlcl3); 

Qmi2 ASSIGN: 
TimeNeed=((Discliarge( 1 )+((J-! )*Discharge(2)))+ 

(Discliarge(TypeLog 12(2))-(TNOW-TimeLog 12)))-
OilcTime: NEXT(SubZl); 

QTrlsl3 ASSIGN: TimeNeed=((Discliarge(l)+((J-!)*Discliarge(2)))+ 
(Discliarge(TypeLog! 3(2))-(TNOW-TimeLog 13 )))-
ClilcTime: NEXT(SubZ!); 

Busyl2 BRANCH,!: 
IF,DurationT 12. GT. ((ArrLog 12(2)+TravTime)-TNO W),Bsy 12: 
ELSE,Bsl2; 

Bsl2 ASSIGN: 
TagR=l: 
TimeNeed=(( ArrLog 12(2)+T ravTime)-TNO W)-

ChlcTime: NEXT(SubZl); 

Bsyl2 ASSIGN: 
TagR=l: 
TimeNeed=DurationT12+Discliarge(l)-C!ilcTime: NEXT(SubZl); 

Busyl3 BRANCH,!: 
IF,DurationT! 3.GT.((ArrLog 13(2)+TravTiine)-TNO W),Bsy 13: 
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ELSE,Bsl3; 

Bsl3 ASSIGN: 
TagL=l: 
TimeNeed=((AiTLogl3(2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZl); 

Bsyl3 ASSIGN: 
TagL=l: 
TimeNeed=DiirationT 13+Discharge( 1 )-ChkTime: NEXT(SubZ 1); 

QTkl2 BRANCH,!: 
IF,(DurationTl 2+((J-l )*Discharge(2))).GT. 

((ArrLogl2(J+2)+TravTime)-TNOW),Qkl2: 
ELSE,Qkkl2; 

Qkl2 ASSIGN: 
TimeNeed=(DurationT12+((J-l)*Discharge(2)))+ 

Discharge(l)-ChkTime: NEXT(SubZl); 

Qkkl2 ASSIGN: 
TimeNeed=((ArrLogl2(J+2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZl); 

QTkl 3 BRANCH, 1: 
IF,(DurationTl 3+((J-l )*Discharge(2))).GT. 

((ArrLogl 3(J+2)+TravTime)-TNOW),Qkl 3: 
ELSE,Qkkl3; 

Qkl3 ASSIGN: 
TimeNeed=(DurationT13+((J-l)*Discharge(2)))+ 

Discharge(l)-ChkTime: NEXT(SubZl); 

Qkkl3 ASSIGN: 
TimeNeed=((ArrLogl3(J+2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZl); 

SubZl BRANCH, 1: 
IF,TimeNeed.LT.O,Morel: 
IF,TimeNeed.GE.MaxGX,Finel: 
ELSE,Chosl; 
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Chosl BRANCH,!; 
IF,DurationT23.LT.DurationT22,DT22: 
ELSE, DT23; 

DT22 ASSIGN: 
Prd=DurationT22: 

QL=NQ(PhaseTR2Q): 
ExtraTime=Green2-DurationT22; NEXT(Extrl); 

DT23 ASSIGN: 
Prd=DurationT23: 
QL=NQ(PhaseTL2Q): 
ExtraTime=Green2-DurationT23; 

;Calculating the Saturation Flow Rate of Next Competing Phase - Direct Observation Method 

Extrl BRANCH, 1: 
IF,Prd.LE.(Green2-ChkTime-TimeNeed),Durl: 
ELSE,Gml; 

Gml ASSIGN: Prd=Green2-ChkTime-TimeNeed; 

Durl ASSIGN: Satur=(QL*(3600/(CycleLength-(Green2-TimeNeed))))/ 
((3600/(Prd/QL))*((Green2-TimeNeed)/CycleLength)); 

Extrl BRANCH,!: 
IF,Satur.GT.MaxSat,Finel: 
IF,ExtraTime.GT.TimeNeed,Extd!: 
ELSE,Prior!; 

;Calculating the Average Stopped Delay Observed in the Next Competing Phase 
; Total Delay Up to Now=(T-t!)+(T-t2)+...+(T-tn) 
; =nT-(tl+t2+...+tn) 
;AvgDel()=(Total Delay Up to Now)/n. 
;where 
;T = current simulation time, 
;t's = arrival time of vehicles joining the next competing queue, and 
;n = number of observed vehicles. 

Prior! ASSIGN: 
Vol(3)=NC(ArrTrk2)-NC(DepTrk2): 
Vol(4)=(NC(ArrA112)-NC(DepA112))-Vol(3); 
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BRANCH, 1: 
IF,Vol(3)=0,Cgl; 
ELSE,Dnl; 

Cgl ASSIGN: Vol(3)=.0000001; 

Dnl ASSIGN: 
AvgDel(3)=((Vol(3)*TNOW)-TimeInT(3))A^ol(3): 
AvgDel(4)=((Vol(4)*TNOW)-TimeInT(4))A^ol(4): 

;Delay Index 

DI=(AvgDeI(3)*W(l))+(AvgDel(4)*W(2)); 

BRANCH,1: 
IF,DI.LT.DIValue,Extdl: 
ELSE,Finel; 

Extdl WRITE, TypeFilel: K,TNOW,TimeNeed,ExtraTinie,DI; 

BRANCH, 1: 
IF,TimeNeed.GT.TimeNeedT,Loopl: 
ELSE,Lopl; 

Loopl ASSIGN: 
TimeNeedT=TimeNeed+.001: 
K=K+1: NEXT(Morel); 

Lopl ASSIGN: 
K=K+1: NEXT(Morel); 

Finel DELAY: ChkTime+TimeNeedT; 

ASSIGN: 
DI=0: 
JR2a=l: 
JL2a=l: 
JR2b=l: 
JL2b=l: 
TagR=0: 
TagL=0; 
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QUEUE, Dum2Q; 
PREEMPT: PhaseTRl; 
PREEMPT: PhaseTLl; 

North, T_R Red—All Red Condition 
North, T_L Red—All Red Condition 

DELAY: LostTime/4; 

RELEASE: PhaseTR2: PhaseTL2; East Green, all the rest Red 
DELAY: Green2-ChkTime-TimeNeedT; 

ASSIGN: 
NewGl =NewGl +TimeNeedT: 
NewG2=Green2-TimeNeedT: 
TimeNeedT=0; 

BRANCH,!: 
IF,PARTII=2.AND.Option=0,PII2: 
ELSE,Fine2; 

PII2 ASSIGN: K=l; 

More2 BRANCH,!: 
IF,NQ(PhaseTR!Q).GT.440.0R.NQ(PhaseTL!Q).GT.440.0R. 
NQ(PhaseTR3Q).GT.440.0R.NQ(PhaseTL3Q).GT.440.0R. 
NQ(PhaseTR4Q).GT.440.0R.NQ(PhaseTL4Q).GT.440,Fine2: 
IF,NQ(PhaseTR2Q).GEJR2a,QSrch22: 
IF,NQ(PhaseTL2Q).GE.JL2a,QSrch23: 
ELSE,Cond2; 

QSrcli22 SEARCH, PhaseTR2Q,JR2a: VehType=3; 
BRANCH,!: 

J2a22 ASSIGN: JR2a=J+!: NEXT(QTrk22); 

QSrch23 SEARCH, PhaseTL2Q,JL2a: VehType=3; 
BRANCH,!: 

IF,J.GT.0,J2a23: 
ELSE,Cond2; 

IF,J.GT.0,J2a22: 
IF,NQ(PhaseTL2Q).GE.JL2a,QSrch23: 
ELSE,Cond2; 



www.manaraa.com

119 

J2a23 ASSIGN: JL2a=J+l: NEXT(QTrk23); 

Cond2 BRANCH,1: 
IF,NR(ReaderTR2)=l.AND.TypArLog22(2)==3 

. AND.T agR=0,Busy22: 
IF,NR(ReaderTL2)=l.AND.TypArLog23(2)==3 

.AND.T agL—0,Busy23: 
IF,NQ(ReaderTR2Q).GE.JR2b,QSch22: 
IF,NQ(ReaderTL2Q).GE.JL2b,QSch23: 
ELSE,Fine2; 

QSch22 SEARCH, ReaderTR2Q,JR2b: VehType=3 
.AND.ArrTime.LE.TN0W-TravTime+R2b; 

BRANCH,1: 
IF,J.GT.0,J2b22: 
IF,NQ(ReaderTL2Q).GE.JL2b,QSch23: 
ELSE,Fine2; 

J2b22 ASSIGN: JR2b=J+l: NEXT(QTk22); 

QSch23 SEARCH, ReaderTL2Q,JL2b: VehType=3 
.AND.ArrTime.LE.TN0W-TravTime+R2b; 

BRANCH,!: 
IF,J.GT.0,J2b23: 
ELSE,Fine2; 

J2b23 ASSIGN: JL2b=J+l: NEXT(QTk23); 

QTrk22 ASSIGN: 
TimeNeed=((Discharge(3)+((J-1 )*Discharge(4)))+ 

(Discharge(TypeLog22(2))-(TNOW-TimeLog22)))-
ChkTime: NEXT(SubZ2); 

QTrk23 ASSIGN: TimeNeed=((Discharge(3)+((J-l)*Discharge(4)))+ 
(Discharge(T ypeLog23 (2))-(TN0W-TimeLog23)))-
ChkTime: NEXT(SubZ2); 

Busy22 BRANCH,!: 
IF,DurationT22.GT.((ArrLog22(2)+TravTime)-TNOW),Bsy22: 
ELSE,Bs22; 

Bs22 ASSIGN: 



www.manaraa.com

120 

TagR=l: 
TimeNeed=((ArrLog22(2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ2); 

Bsy22 ASSIGN: 
TagR=l: 
TimeNeed=DurationT22+Discharge(3 )-ChkTime: NEXT (SubZ2); 

Busy23 BRANCH,!: 
IF,DurationT23 .GT.((ArrLog23 (2)+TravTime)-TN0 W),Bsy23: 
ELSE,Bs23; 

Bs23 ASSIGN: 
TagL=l: 
TimeNeed=((ArrLog23(2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ2); 

Bsy23 ASSIGN: 
TagL=l: 
TimeNeed=DurationT23+Discharge(3)-ChkTime: NEXT(SubZ2); 

QTk22 BRANCH,!: 
IF,(DurationT22+((J-1 )*Discharge(4))).GT. 

((ArrLog22(J+2)+TravTime)-TNOW),Qlc22: 
ELSE,Qkk22; 

Qlc22 ASSIGN; 
TimeNeed=(DurationT22+((J-l)*Discharge(4)))+ 

Discharge(3)-ChkTime: NEXT(SubZ2); 

Qkk22 ASSIGN: 
TimeNeed=((ArrLog22(J+2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ2); 

QTk23 BRANCH,!: 
IF,(DurationT23+((J-l)*Discharge(4))).GT. 

((ArrLog23(J+2)+TravTime)-TNOW),Qk23: 
ELSE,Qkk23; 

Qk23 ASSIGN: 
TimeNeed=(DurationT23+((J-! )*Discharge(4)))+ 

Discharge(3)-ChkTime: NEXT(SubZ2); 
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Qkk23 ASSIGN: 
TimeNeed=((ArrLog23(J+2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ2); 

SubZ2 BRANCH,1: 
IF,TimeNeed.LT.0,More2: 
IF,TimeNeed.GE.MaxGX,Fine2: 
ELSE,Chos2; 

Chos2 BRANCH, 1: 
IF,DurationT33.LT.DurationT32,DT32: 
ELSE,DT33; 

DT32 ASSIGN: 
Prd=DurationT32: 
QL=NQ(PhaseTR3Q): 
ExtraTime=Green3-DurationT32 
:NEXT(Extr2); 

DT33 ASSIGN: 
Prd=DiirationT33: 
QL=NQ(PhaseTL3Q): 
ExtraTime=Green3 -DurationT3 3; 

Extr2 BRANCH, 1: 
IF,Prd.LE.(Green3-ChkTime-TimeNeed),Dur2: 
ELSE,Gm2; 

Gm2 ASSIGN: Prd=Green3-ChkTime-TimeNeed; 

Dur2 ASSIGN: Satur=(QL*(3600/(CycleLength-(Green3-TimeNeed))))/ 
((3600/(Prd/QL))*((Green3-TimeNeed)/CycleLength)); 

Extr2 BRANCH,!: 
IF,Satur. GT.MaxSat,F ine2: 
IF,ExtraTime.GT.TimeNeed,Extd2: 
ELSE,Prior2; 

Prior2 ASSIGN: 
Vol(5)=NC(ArrTrk;3)-NC(DepTrk3): 
Vol(6)=(NC(ArrA113)-NC(DepAli3))-Vol(5); 
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BRANCH, 1; 
IF,Vol(5)=0,Cg2: 
ELSE,Dn2; 

Cg2 ASSIGN: Vol(5)=.0000001; 

Dn2 ASSIGN: 
AvgDel(5)=((Vol(5)*TNOW)-TimeInT(5))A^ol(5): 
AvgDel(6)=((Vol(6)*TNOW)-TiineInT(6))A^ol(6): 
DI=(AvgDel(5)*W(l))+(AvgDel(6)*W(2)); 

BRANCH,!: 
IF,DI.LT.DIValue,Extd2: 
ELSE,Fine2; 

Extd2 WRITE, TypeFile2: K,TNOW,TimeNeed,ExtraTitne,DI; 

BRANCH, 1: 
IF,TimeNeed.GT.TimeNeedT,Loop2: 
ELSE,Lop2; 

Loop2 ASSIGN: 
TimeNeedT=TimeNeed+.001: 
K=K+l:NEXT(More2); 

Lop2 ASSIGN: K=K+1: NEXT(More2); 

Fine2 DELAY: ChkTime+TimeNeedT; 

ASSIGN: 
DI=0: 
JR2a=l: 
JL2a=l: 
JR2b=l: 
JL2b=l: 
TagR=0: 
TagL=0; 

QUEUE, Dum3Q; 
PREEMPT: PhaseTR2; 
PREEMPT: PhaseTL2; 

East, T_R Red-All Red Condition 
East, T_L Red—All Red Condition 
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DELAY; LostTime/4; 

RELEASE: PhaseTR3: PhaseTL3; South Green, all the rest Red 
DELAY: Green3-ChkTime-TimeNeedT; 

ASSIGN: 
NewG2=NewG2+TimeNeedT: 
NewG3=Green3-TimeNeedT: 
TinieNeedT=0; 

BRANCH, 1: 
IF,PARTII=2.AND.Option=0,PII3: 
ELSE,Fine3; 

PII3 ASSIGN: K=l; 

More3 BRANCH, 1: 
IF,NQ(PhaseTRl Q).GT.440.0R.NQ(PhaseTLl Q).GT.440.0R. 
NQ(PhaseTR2Q).GT.440.0R.NQ(PhaseTL2Q).GT.440.0R. 
NQ(PhaseTR4Q).GT.440.0R.NQ(PhaseTL4Q).GT.440,Fine3: 
IF,NQ(PhaseTR3Q).GE.JR2a,QSrch32: 
IF,NQ(PhaseTL3Q).GE.JL2a,QSrch33: 
ELSE,Cond3; 

QSrch32 SEARCH, PhaseTR3Q,JR2a: VehType=5; 
BRANCH,!: 

IF,J.GT.0,J2a32: 
IF,NQ(PhaseTL3Q).GE.JL2a,QSrch33: 
ELSE,Cond3; 

J2a32 ASSIGN: JR2a=J+l: NEXT(QTrk32); 

QSrch33 SEARCH, PhaseTL3Q,JL2a: VehType=5; 
BRANCH,!: 

IF,J.GT.0,J2a33: 
ELSE,Cond3; 

J2a33 ASSIGN: JL2a=J+l: NEXT(QTrk33); 

CondB BRANCH,!: 
IF,NR(ReaderTR3)=l.AND.TypArLog32(2)==5 
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.AND.TagR—0,Busy32: 
IF,NR(ReaderTL3)=l.AND.TypArLog33(2)=5 

.AND.TagL=0,Busy33: 
IF,NQ(ReaderTR3Q).GE.JR2b,QSch32: 
IF,NQ(ReaderTL3Q).GE.JL2b,QSch33: 
ELSE,Fine3; 

QSch32 SEARCH, ReaderTR3Q,JR2b: VehType=5 
.AND.ArrTime.LE.TN0W-TravTime+R2b; 

BRANCH,!: 
IF,J.GT.0,J2b32: 
IF,NQ(ReaderTL3Q).GE.JL2b,QSch33: 
ELSE,Fine3; 

J2b32 ASSIGN: JR2b=J+l: NEXT(QTk32); 

QSch33 SEARCH, ReaderTL3Q,JL2b: VehType=5 
.AND.ArrTime.LE.TN0W-TravTime+R2b; 

BRANCH,!: 
IF,J.GT.0,J2b33: 
ELSE,Fine3; 

J2b33 ASSIGN: JL2b=J+!: NEXT(QTk33); 

QTrk32 ASSIGN: 
TimeNeed=((Discharge(5)+((J-! )*Discliarge(6)))+ 

(Discliarge(TypeLog32(2))-(TNOW-TimeLog32)))-
ChkTime: NEXT(SubZ3); 

QTrk33 ASSIGN: TimeNeed=((Disc!iarge(5)+((J-!)*Discharge(6)))+ 
(Discharge(TypeLog33(2))-(TNOW-TiineLog33)))-
ChkTime: NEXT(SubZ3); 

Busy32 BRANCH,!: 
IF,DurationT32.GT.((ArrLog32(2)+TravTime)-TNOW),Bsy32: 
ELSE,Bs32; 

Bs32 ASSIGN: 
TagR=l: 
TimeNeed=((AiTLog32(2)+TravTime)-TNOW)-

ClikTime: NEXT(SubZ3); 
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Bsy32 ASSIGN: 
TagR=l: 
TimeNeed=DurationT32+Discharge(5)-ChkTime: NEXT(SubZ3); 

Busy33 BRANCH,!: 
IF,DurationT33.GT.((ArrLog33(2)+TravTime)-TNOW),Bsy33: 
ELSE,Bs33; 

Bs33 ASSIGN: 
TagL=l: 
TimeN eed=((ArrLog3 3 (2)+TravTime)-TN0 W)-

ChkTime: NEXT(SubZ3); 

Bsy33 ASSIGN: 
TagL=I: 
TimeNeed=DiirationT33+Discharge(5)-ChkTime: NEXT(SubZ3); 

QTk32 BRANCH,!: 
IF,(DurationT32+((J-l)*Discharge(6))).GT. 

((ArrLog32(J+2)+TravTime)-TNOW),Qk32: 
ELSE,Qkk32; 

Qk32 ASSIGN: 
TimeNeed=(DurationT32+((J-1 )*Discliarge(6)))+ 

Discharge(5)-ClikTime: NEXT(SubZ3); 

Qkk32 ASSIGN: 
TimeNeed=((ArrLog32(J+2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ3); 

QTk33 BRANCH,!: 
IF,(DurationT33+((J-! )*Discharge(6))).GT. 

((AiTLog33(J+2)+TravTime)-TNOW),Qk33: 
ELSE,Qkk33; 

Qk33 ASSIGN: 
TimeNeed=(DurationT3 3+(( J-1 )* Discliarge(6)))+ 

Discliarge(5)-ClikTime: NEXT(SubZ3); 

Qkk33 ASSIGN: 
TimeNeed=((ArrLog33(J+2)+TravTime)-TNOW)-
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ChkTime: NEXT(SubZ3); 

SubZ3 BRANCH, 1: 
IF,TimeNeed.LT.0,More3: 
IF,TimeNeed.GE.MaxGX,Fine3: 
ELSE,Chos3; 

Chos3 BRANCH,!: 
IF,DurationT43.LT.DurationT42,DT42: 
ELSE, DT43; 

DT42 ASSIGN: 
Prd=DurationT42: 
QL=NQ(PhaseTR4Q): 
ExtraTime=Green4-DurationT 42 
:NEXT(Extr3); 

DT43 ASSIGN: 
Prd=DurationT43: 

QL=NQ(PhaseTL4Q): 
ExtraTime=Green4-DurationT43; 

Extr3 BRANCH,!: 
IF,Prd.LE.(Green4-ChkTime-TimeNeed),Dur3: 
ELSE,Gm3; 

Gm3 ASSIGN: Prd=Green4-ChkTime-TimeNeed; 

Dur3 ASSIGN: Satur=(QL*(3600/(CycleLength-(Green4-TimeNeed))))/ 
((3600/(Prd/QL))*((Green4-TimeNeed)/CycleLength)); 

Extr3 BRANCH,!: 
IF,Satur.GT.MaxSat,Fine3: 
IF,ExtraTime.GT.TimeNeed,Extd3: 
ELSE,Prior3; 

Prior3 ASSIGN: 
Vol(7)=NC(ArrTrk4)-NC(DepTrk4): 
Vol(8)=(NC(ArrA114)-NC(DepAlI4))-Vol(7); 

BRANCH,!: 
IF,Vol(7)=0,Cg3: 
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ELSE,Dn3; 

Cg3 ASSIGN: Vol(7)=.0000001; 

Dn3 ASSIGN; 
AvgDeI(7)=((Vol(7)*TNOW)-TimeInT(7))A^ol(7): 
AvgDel(8)=((Vol(8)*TNOW)-TimeInT(8))A^ol(8): 
DI=(AvgDel(7)*W(l))+(AvgDel(8)*W(2)); 

BRANCH, 1: 
IF,DI.LT.DIValue,Extd3: 
ELSE,Fine3; 

Extd3 WRITE, TypeFiIe3: K,TNOW,TinieNeed,ExtraTime,DI; 

BRANCH,!: 
IF,TimeNeed.GT.TinieNeedT,Loop3: 
ELSE,Lop3; 

Loop3 ASSIGN: 
TimeNeedT=TimeNeed+.001: 
K=K+l:NEXT(More3); 

Lop3 ASSIGN: K=K+1: NEXT(More3); 

Fine3 DELAY: ChkTime+TimeNeedT; 

ASSIGN: 
DI=0: 
JR2a=l: 
JL2a=l: 
JR2b=l: 
JL2b=l: 
TagR=0: 
TagL=0; 

QUEUE, Dum4Q; 
PREEMPT: PhaseTR3; South, T_R Red—All Red Condition 
PREEMPT: PhaseTL3; South, T_L Red—All Red Condition 

DELAY: LostTime/4; 
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RELEASE: PhaseTR4: PhaseTL4; West Green, all the rest Red 
DELAY: Green4-ChkTime-TimeNeedT; 

ASSIGN: 
NewG3=NewG3+TimeNeedT: 
NewG4=Green4-TimeNeedT: 
TimeNeedT=0; 

BRANCH,!: 
IF,PARTII=2.AND.Option==O.AND.CPh.LT.Multi,PII4: 
ELSE,Fine4; 

PII4 ASSIGN: K=l; 

More4 BRANCH, 1: 
IF,NQ(PhaseTRlQ).GT.440.0R.NQ(PhaseTLlQ).GT.440.0R. 

NQ(PhaseTR2Q).GT.440.0R.NQ(PhaseTL2Q).GT.440.0R. 
NQ(PhaseTR3Q).GT.440.0R.NQ(PhaseTL3Q).GT.440,Fine4: 

IF,NQ(PhaseTR4Q).GE.JR2a,QSrch42: 
IF,NQ(PhaseTL4Q).GE.JL2a,QSrch43: 
ELSE,Cond4; 

QSrch42 SEARCH, PhaseTR4Q,JR2a: VehType=7; 

BRANCH, 1: 
IF,J.GT.0,J2a42: 
IF,NQ(PhaseTL4Q).GE.JL2a,QSrch43: 
ELSE,Cond4; 

J2a42 ASSIGN: JR2a=J+l: NEXT(QTrk42); 

QSrch43 SEARCH, PhaseTL4Q,JL2a: VehType==7; 
BRANCH,!: 

IF,J.GT.0,J2a43: 
ELSE,Cond4; 

J2a43 ASSIGN: JL2a=J+l: NEXT(QTrk43); 

Cond4 BRANCH,!: 
IF,NR(ReaderTR4)=!.AND.TypArLog42(2)=7 

.AND.TagR==0,Busy42: 
IF,NR(ReaderTL4)=!.AND.TypArLog43(2)==7 
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. AND.TagL=0,Busy43: 
IF,NQ(ReaderTR4Q).GE.JR2b,QSch42: 
IF,NQ(ReaderTL4Q).GE.JL2b,QSch43: 
ELSE,Fine4; 

QSch42 SEARCH, ReaderTR4Q,JR2b: VehType=7 
.AND.ArrTinie.LE.TN0W-TravTime+R2b; 

BRANCH,!: 
IF,J.GT.0,J2b42: 
IF,NQ(ReaderTL4Q).GE.JL2b,QSch43: 
ELSE,Fine4; 

J2b42 ASSIGN: JR2b=J+l: NEXT(QTk42); 

QSch43 SEARCH, ReaderTL4Q,JL2b: VehType=7 
.AND.ArrTime.LE.TN0W-TravTime+R2b; 

BRANCH,!: 
IF,J.GT.0,J2b43: 
ELSE,Fine4; 

J2b43 ASSIGN: JL2b=J+l: NEXT(QTk43); 

QTrk42 ASSIGN: 
TimeNeed=((Discharge(7)+((J-1 )*Discharge(8)))+ 

(Discharge(TypeLog42(2))-(TNOW-TinieLog42)))-
ChkTime: NEXT(SubZ4); 

QTrk43 ASSIGN: TimeNeed=((Discharge(7)+((J-l)*Discharge(8)))+ 
(Discharge(T ypeLog43 (2))-(TN O W-TimeLog43 )))-
ChkTime: NEXT(SubZ4); 

Busy42 BRANCH,!: 
IF,DurationT42.GT.((ArrLog42(2)+TravTime)-TNOW),Bsy42: 
ELSE,Bs42; 

Bs42 ASSIGN: 
TagR=l: 
TimeNeed=((ArrLog42(2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ4); 

Bsy42 ASSIGN: 
TagR=!: 
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TimeNeed=DurationT42+Discharge(7)-ChkTime: NEXT(SubZ4); 

Busy43 BRANCH,!; 
IF,DurationT43 .GT.((AiTLog43(2)+TravTime)-TNOW),Bsy43: 
ELSE,Bs43; 

Bs43 ASSIGN: 
TagL=l; 
TimeNeed=((ArrLog43(2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ4); 

Bsy43 ASSIGN: 
TagL=l: 
TimeNeed=DurationT43+Discharge(7)-ChkTime: NEXT(SubZ4); 

QTk42 BRANCH, 1: 
IF,(DurationT42+((J-l)*Discharge(8))).GT. 

((ArrLog42(J+2)+TravTime)-TNOW),Qk42: 
ELSE,Qkk42; 

Qk42 ASSIGN: 
TimeNeed=(DuratioiiT42+((J-1 )*Discharge(8)))+ 

Discharge(7)-ChkTime: NEXT(SubZ4); 

Qkk42 ASSIGN: 
TimeNeed=((ArrLog42(J+2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ4); 

QTk43 BRANCH,!: 
IF,(DurationT43+((J-l)*Discharge(8))).GT. 

((ArrLog43(J+2)+TravTime)-TNOW),Qk43: 
ELSE,Qkk43; 

Qk43 ASSIGN: 
TimeNeed=(DurationT 43+((J-1 )*Discharge(8)))+ 

Discharge(7)-ChkTime: NEXT(SubZ4); 

Qkk43 ASSIGN: 
TimeNeed=((ArrLog43(J+2)+TravTime)-TNOW)-

ChkTime: NEXT(SubZ4); 

SubZ4 BRANCH,!: 
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IF,TimeNeed.LT.0,More4: 
IF,TimeNeed.GE.MaxGX,Fine4: 
ELSE,Chos4; 

Chos4 BRANCH, 1: 
IF,DurationT 13 .LT.DurationT 12,DT 12: 
ELSE, DT13; 

DTI2 ASSIGN: 
Prd=DurationT12: 

QL=NQ(PhaseTRlQ): 
ExtraTime=Green 1 -DurationT 12 
:NEXT(Extr4); 

DTI3 ASSIGN: 
Prd=DurationT13: 
QL=NQ(PhaseTLlQ): 
ExtraT ime=Green 1 -DurationT 13; 

Extr4 BRANCH, 1: 
IF,Prd.LE.(Greenl-ChkTime-TimeNeed),Dur4: 
ELSE,Gm4; 

Gm4 ASSIGN: Prd=Greenl-ChkTime-TimeNeed; 

Dur4 ASSIGN: Satur=(QL*(3600/(CycIeLength-(Greenl-TimeNeed))))/ 
((3600/(Prd/QL)) * ((Green 1 -TimeNeed)/CycleLength)); 

Extr4 BRANCH, 1: 
IF,Satur.GT.MaxSat,Fine4: 
IF,ExtraTime.GT.TimeNeed,Extd4: 
ELSE,Prior4; 

Prior4 ASSIGN: 
Vol(l )=NC(ArrTrkl )-NC(DepTrkl): 
Vol(2)=(NC(ArrAlll)-NC(DepAlll))-Vol(l); 

BRANCH, 1: 
IF,Vol(l)=0,Cg4: 
ELSE,Dn4; 

Cg4 ASSIGN: Vol(l)=.0000001; 
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Dn4 ASSIGN: 
AvgDel(l)=((Vol(l)*TNOW)-TimeInT(l))A^ol(l): 
AvgDel(2)=((Vol(2)*TNOW)-TimeInT(2))A^ol(2): 
DI=(AvgDel(l)*W(l))+(AvgDel(2)*W(2)); 

BRANCH,1: 
IF,DI.LT.DIValue,Extd4; 
ELSE,Fine4; 

Extd4 WRITE, TypeFile4: K,TNOW,TiineNeed,ExtraTime,DI; 

BRANCH,1: 
IF,TimeNeed.GT.TimeNeedT,Loop4: 
ELSE,Lop4; 

Loop4 ASSIGN: 
TimeNeedT=TimeNeed+.001 : 
K=K+l:NEXT(More4); 

Lop4 ASSIGN: K=K+1: NEXT(More4); 

Fine4 DELAY: ChkTime+TimeNeedT; 

ASSIGN: 
DI=0: 
JR2a=l: 
JL2a=l: 
JR2b=l: 
JL2b=l: 
TagR=0: 
TagL=0; 

QUEUE, DumSQ; 
PREEMPT: PhaseTR4; South, T_R Red--All Red Condition 
PREEMPT: PhaseTL4; South, T_L Red—All Red Condition 

DELAY: LostTime/4; 

RELEASE: PhaseTRl: PhaseTLl; 
RELEASE: PhaseTR2: PhaseTL2; 
RELEASE: PhaseTR3: PhaseTL3; 
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RELEASE: PhaseTR4: PhaseTL4; 

ASSIGN: 
NewG4=NewG4+TimeNeedT: 
NewCycle=NewGl+NewG2+NewG3+NewG4+LostTime; 

ASSIGN: 
AvgDel(l)=0: 
AvgDel(2)=0: 
AvgDel(3)=0: 
AvgDel(4)=0: 
AvgDel(5)=0: 
AvgDel(6)=0: 
AvgDel(7)=0: 
AvgDel(8)=0; 

ASSIGN: 
CPh=CPh+l: 
ChangeTime=TNOW-StartTime; 

BRANCH,!: 
IF,ChangeTime.GE.Period2,Print: 
ELSE,Cycle; 

;Calculating Average Stopped Delay at the End of Each Period 

Print ASSIGN: 
Vol(l )=NC(DepTrkl )-OVol(l): 
Vol(2)=(NC(DepAlll)-NC(DepTrkl))-OVol(2): 
Vol(3)=NC(DepTrk2)-OVoI(3): 
Vol(4)=(NC(DepA112)-NC(DepTrk2))-OVol(4): 
Vol(5)=NC(DepTrk3)-OVol(5): 
Vol(6)=(NC(DepA113)-NC(DepTrk3))-OVol(6): 
Vol(7)=NC(DepTrk4)-OVoI(7): 
Vol(8)=(NC(DepA114)-NC(DepTrk4))-OVol(8): 

OVol(l)=NC(DepTrkl): 
OVol(2)=NC(DepAlll)-NC(DepTrkl): 
OVol(3)=NC(DepTrk2): 
OVol(4)=NC(DepA112)-NC(DepTrk2): 
OVol(5)=NC(DepTrk3): 
OVol(6)=NC(DepA113)-NC(DepTrk3): 
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OVol(7)=NC(DepTrk4): 
OVol(8)=NC(DepA114)-NC(DepTrk4): 

LapVol(l 
LapVol(2 
LapVol(3 
LapVol(4 
LapVol(5 
LapVol(6 
LapVol(7 
LapVol(8 

LapDel(l 
LapDel(2 
LapDel(3 
LapDel(4 
LapDel(5 
LapDel(6 
LapDel(7 
LapDel(8 

=NC(ArrTrkl) 
=(NC(ArrAlll) 
=NC(ArrTrk2)-
=(NC(ArrA112) 
=NC(ArrTrk3)-
=(NC(ArrA113) 
=NC(ArrTrk4) 
=(NC(ArrA114) 

•NC(DepTrkl): 
•NC(DepAlll))-LapVol(l): 
•NC(DepTrk2): 
-NC(DepAlI2))-LapVol(3): 
•NC(DepTrk3): 
-NC(DepA113))-LapVol(5): 
NC(DepTrk4): 
HNC(DepA114))-LapVol(7): 

=(LapVol(l)*TNOW)-
=(LapVol(2)*TNOW)-
=(LapVol(3)*TNOW)-
=(LapVol(4)*TNOW)-
=(LapVol(5)*TNOW)-
=(LapVoI(6)*TNOW)-
=(LapVol(7)*TNOW)-
=(LapVol(8)*TNOW)-

TimelnT(l) 
TimeInT(2) 
TimeInT(3) 
TimeInT(4) 
TimeInT(5) 
TimeInT(6) 
TimeInT(7) 
TimeInT(8) 

Vol(l)=Vol(l)+LapVol(l) 
VoI(2)=Vol(2)+LapVol(2) 
Vol(3)=Vol(3)+LapVol(3) 
Vol(4)=Vol(4)+LapVol(4) 
Vol(5)=Vol(5)+LapVol(5) 
VoI(6)=Vol(6)+LapVol(6) 
Vol(7)=Vol(7)+LapVol(7) 
Vol(8)=Vol(8)+LapVol(8) 

;Calculating Total Stopped Delay at the End of Simulation Run Time 

AvgStopT (1 )=AvgStopT (1 )+AvgStop( 1): 
AvgStopT (2)=AvgStopT (2)+AvgStop(2): 
AvgStopT(3)=AvgStopT(3)+AvgStop(3): 
AvgStopT (4)=AvgStopT(4)+AvgStop(4): 
AvgStopT(5)=AvgStopT(5)+AvgStop(5): 
AvgStopT (6)=AvgStopT(6)+AvgStop(6): 
AvgStopT (7)=AvgStopT (7)+AvgStop(7): 
AvgStopT(8)=AvgStopT(8)+AvgStop(8); 

BRANCH, 1: 



www.manaraa.com

135 

IF,Vol(l)=0,Chgl 
IF,Vol(3)=0,Chg3 
IF,Vol(5)=0,Chg5 
IF,Vol(7)=0,Chg7 
ELSE,Don; 

Chgl ASSIGN: Vol(l)= 0000001; 

BRANCH,!: 
IF,Vol(3)=0,Chg3: 
ELSE,Ck3; 

Chg3 ASSIGN: Vol(3)= 0000001; 

Ck3 BRANCH, 1: 
IF,Vol(5)==0,Chg5: 
ELSE,Ck5; 

ChgS ASSIGN: Vol(5)= 0000001; 

Ck5 BRANCH,!: 
IF,Vol(7)=0,Chg7: 
ELSE,Don; 

aig7 ASSIGN: Vol(7)=.000000I; 

Don ASSIGN: 
AvgStop( 1 )=(AvgStop( 1 )+LapDel( 1 )-OLapDel( 1 ))A^ ol( 1) 
AvgStop(2)=(AvgStop(2)+LapDel(2)-OLapDel(2))AVol(2) 
AvgStop(3)=(AvgStop(3)+LapDel(3)-OLapDel(3))A^ol(3) 
AvgStop(4)=(AvgStop(4)+LapDel(4)-OLapDel(4))A^ol(4) 
AvgStop(5)=(AvgStop(5)+LapDel(5)-OLapDel(5))A^ol(5) 
AvgStop(6)=(AvgStop(6)+LapDel(6)-OLapDeI(6))A^ol(6) 
AvgStop(7)=(AvgStop(7)+LapDel(7)-OLapDel(7))A^oI(7) 
AvgStop(8)=(AvgStop(8)+LapDel(8)-OLapDel(8))A^ol(8) 

OLapDel(l)=LapDel(l) 
OLapDel(2)=LapDel(2) 
OLapDel(3)=LapDel(3) 
OLapDel(4)=LapDel(4) 
OLapDel(5)=LapDel(5) 
OLapDel(6)=LapDel(6) 
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OLapDel(7)=LapDel(7): 
OLapDel(8)=LapDel(8): 

TrkDelay=((AvgStop(l)*Vol(l))+(AvgStop(3)*Vol(3))+ 
(AvgStop(5)*Vol(5))+(AvgStop(7)*Vol(7)))/ 

(Vol(l)+Vol(3)+Vol(5)+Vol(7)): 
CarDelay=((AvgStop(2)*Vol(2))+(AvgStop(4)*Vol(4))+ 

(AvgStop(6)*Vol(6))+(AvgStop(8)*Vol(8)))/ 
(Vol(2)+Vol(4)+Vol(6)+Vol(8)): 

IntDelay=((AvgStop(l)*Vol(l))+(AvgStop(2)*Vol(2))+ 
(AvgStop(3)*Vol(3))+(AvgStop(4)*Vol(4))+ 
(AvgStop(5)*Vol(5))+(AvgStop(6)*Vol(6))+ 
(AvgStop(7)*Vol(7))+(AvgStop(8)*Vol(8)))/ 
(Vol(l)+Vol(2)+Vol(3)+Vol(4)+Vol(5)+Vol(6)+Vol(7)+Vol(8)): 

AvgStop(l)=0: 
AvgStop(2)=0: 
AvgStop(3)=0: 
AvgStop(4)=0: 
AvgStop(5)=0: 
AvgStop(6)=0: 
AvgStop(7)=0: 
AvgStop(8)=0; 

Delay: PeriodS-ChangeTime; 

BRANCH,!: 
IF,Option=0,Wr: 
ELSE,Rd; 

Rd READ, F,FREE: ActFlowl,ActFlow2,ActFlow3,ActFlow4, 
T ruck% 1 ,T nick%2,T ruck%3 ,Truck%4; 

Wr WRITE, Output: TNOW,ActFlowl,ActFlow2,ActFlow3,ActFlow4, 
Truck%l,Truck%2,Truck%3,Truck%4, 
TrkDelay,CarDelay,IntDelay; 

;Calculate the Overall Average Stopped Delay at the End of the Simulation Run 

BRANCH,!: 
IF,TNOW.GT.Period4,Printl: 
ELSE,Goo; 
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((AvgStopT(6)*Vol(6))+(LapVol(6)*LapDel(6)))+ 
((AvgStopT(8)*Vol(8))+(LapVol(8)*LapDel(8))))/ 
(Vol(2)+Vol(4)+LapVol(2)+LapVol(4)+ 
Vol(6)+VoI(8)+LapVol(6)+LapVol(8)): 

IntDelay=(((AvgStopT(l )* Vol(l ))+(LapVol( 1 )*LapDel( 1)))+ 
((AvgStopT(2)*Vol(2))+(LapVol(2)*LapDeI(2)))+ 
((AvgStopT(3)*VoI(3))+(LapVol(3)*LapDel(3)))+ 
((AvgStopT(4)*Vol(4))+(LapVol(4)*LapDel(4)))+ 
((AvgStopT(5)*Vol(5))+(LapVol(5)*LapDel(5)))+ 
((AvgStopT(6)*Vol(6))+(LapVol(6)*LapDel(6)))+ 
((AvgStopT(7)*Vol(7))+(LapVol(7)*LapDel(7)))+ 
((AvgStopT(8)*Vol(8))+(LapVol(8)*LapDel(8))))/ 
(Vol(l)+Vol(3)+LapVol(l)+LapVol(3)+ 
Vol(5)+Vol(7)+LapVol(5)+LapVol(7)+ 
VoI(2)+Vol(4)+LapVol(2)+LapVol(4)+ 
Vol(6)+Vol(8)+LapVol(6)+LapVol(8)); 

WRITE, Output: TrkDelay,CarDelay,IntDelay; 
; WRITE, Output; TT(1),TT(2),TT(3),TT(4); 
; WRITE, Output: Delayl,Delay2,Delay3,Delay4,WebDelay; 

Goo ASSIGN: StartTime=TNOW; 

BRANCH, 1: 
IF,Option=0,AVI: 
ELSE,Cycle; 

;Traffic Flow Module 

;Phase 1 - North Bound 

CREATE; 

ReadNxl READ, F11,FREE: ArrTime,VehType,VehDir; 

ASSIGN: InterArr=ArrTime-TNOW; 

;Adjusting the Short Headways 

ASSIGN: V1=V1+1; 
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BRANCH, 1: 
IF,V1==1,0K1: 
ELSE, Chkl; 

Chkl ASSIGN: Headway=(Clearance(VehType)+VehLen(LeadVeh))/Spd; 

BRANCH,!: 
IF, InterArr.LT.Headway, Shiftl: 
ELSE, OKI; 

Shiftl ASSIGN: InterArr=Headway; 

OKI ASSIGN: LeadVeh=VehType; 

DELAY: InterArr; 

Duplicate: l,ReadNxl; 

BRANCH,!: 
IF,(VehDir=l. AND.NQ(ReaderTRl Q).LE.NQ(ReaderTL 1 Q)).OR. 

VehDir=2,RRl: 
ELSE, LLl; 

RRl ASSIGN: 
V12=V12+1: 
Direction=2; 

BRANCH,!: 
IF,V12=1,IA12: 
ELSE, TV 12; 

TV 12 BRANCH,!: 
IF,ArrTime.LT.(OAT12+TravTiine),TT12: 
ELSE, IA!2; 

TT12 ASSIGN: TravTime=ArrTime-0AT12; 

IA12 ASSIGN: 
0AT12=ArrTime: 
TVA!2=TVA12+1: 
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T yp ArLog 12(T V A12)=V ehT ype: 
ArrLogl 2(TVA12)=ArrTime; 

QUEUE, ReaderTRlQ; 
SEIZE: ReaderTRl; 
DELAY: TravTime; 
RELEASE: ReaderTRl; 

;Renumbering the TypArLogQ and ArrLogQ array by shifting strategy. 

ASSIGN: TVD12=2; 

BRANCH,!: 
IF,TVA12=2,Frel2: 
ELSE, Chkkl2; 

Frel2 ASSIGN: 
TypArLogl2(TVA12)=0: 
ArrLogl2(TVA12)=0; 

Chkkl2 BRANCH,!: 
IF,TVD 12.LT.TVA12,Shfl 2: 
ELSE, Uptl2; 

Shfl2 ASSIGN: 
Typ ArLog 12(TVD 12)=TypArLog 12(TVD 12+1): 
ArrLogl2(TVD12)=ArrLog!2(TVD12+l): 
TVD12=TVD12+1: NEXT(Chkkl2); 

Uptl2 ASSIGN: TVA12=TVA12-1: NEXT(Dchl); 

LLl ASSIGN: 
V13=V13+1: 
Direction=3; 

BRANCH,!: 
IF,V13=1,IA13: 
ELSE, TV13; 

TV13 BRANCH,!: 
IF,ArrTime.LT.(OATl 3+TravTime),TTl 3: 
ELSE, IA13; 
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TT13 ASSIGN: TravTime=ArrTime-0AT13; 

IA13 ASSIGN: 
0AT13=ArrTime: 
TVA13=TVA13+1: 
TypArLogl 3(TVA13)=VehType: 
ArrLog 13 (TV A13 )=ArrT ime; 

QUEUE, ReaderTLlQ; 
SEIZE: ReaderTLl; 
DELAY: TravTime; 
RELEASE: ReaderTLl; 

ASSIGN: TVD13=2; 

BRANCH,!: 
IF,TVA13=2,Frel3: 
ELSE, Chkkl3; 

Frel3 ASSIGN: 
TypArLogl3(TVA13)=0: 
ArrLogl3(TVA13)=0; 

Chkkl3 BRANCH,!: 
IF,TVD13.LT.TVA!3,S!ifl3: 
ELSE, Uptl3; 

Shfl3 ASSIGN: 
TypArLogl3(TVD13)=TypArLog!3(TVD!3+!); 
ArrLog! 3(TVD 13)=ArrLog! 3(TVD! 3+1): 
TVD!3=TVDI3+!: NEXT(Chkkl3); 

Upt!3 ASSIGN: TVA13=TVA!3-!; 

Dch! BRANCH,!: 
IF,(NR(PliaseTR! )==O.AND.NQ(PhaseTR! Q)=0. AND. 

Direction=2).OR. 
(NR(PhaseTL!)==O.AND.NQ(PliaseTLlQ)=O.AND. 
Direction=3),NoDel!: 

ELSE,Del!; 

NoDell ASSIGN: Duration=0: NEXT(Dupl); 



www.manaraa.com

142 

Dell ASSIGN: Duration=Discharge(VehType); 

Dupl ASSIGN: StopDel=TNOW; 

;Count Trucks and All Vehicles 

BRANCH,1: 
IF,VehType=l,Trkl: 
ELSE,A111; 

Trkl COUNT: ArrTrkl; 
Alll COUNT: ArrAlll; 

ASSIGN: 
TimeInl=TNOW: 
TimeInT (VehT ype)=TimeInT (V ehT ype)+Timeln 1; 

BRANCH,!: 
IF,Direction=2,Rl: 
IF,Direction==3,Ll; 

LI ASSIGN: 
CA13=CA13+1: 
TypeLogl 3(CA13)=VehType: 
DurationTl 3=DurationT 13+Duration: NEXT(TrL 1); 

R1 ASSIGN: 
CA12=CA12+1: 
TypeLogl2(CA12)=VehType: 
DurationT 12=DurationT 12+Duration; 

COUNT: Arrl2; 

QUEUE, PhaseTRlQ; 
SEIZE: PhaseTRl; 
DELAY: Duration; 
RELEASE: PhaseTRl; 

COUNT: Depl2; 

;Renumbering Variable TypeLogQ Array 
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ASSIGN: CD12=2; 

BRANCH,!: 
IF,CA12==2,Freel2: 
ELSE, Chckl2; 

Freel2 ASSIGN: TypeLogl2(CA12)=0; 

Chckl 2 BRANCH, 1: 
IF,CD12.LT.CA12,Shftl2: 
ELSE, Updtl2; 

Shftl2 ASSIGN: 
TypeLog 12(CD 12)=TypeLog 12(CD 12+1): 
CD12=CD12+1: NEXT(Chckl2); 

Updtl2 ASSIGN: 
CA12=CA12-1: 
DurationT 12=DurationT 12-Diiration: 
TimeLogl2=TNOW: NEXT(PunOutl); 

TrLl COUNT: Arrl3; 

QUEUE, PhaseTLlQ; 
SEIZE: PhaseTLl; 
DELAY: Duration; 
RELEASE: PhaseTLl; 

COUNT: Depl3; 

ASSIGN: CD 13=2; 

BRANCH,1: 
IF,CA13=2,Freel3: 
ELSE, Chckl 3; 

Freel3 ASSIGN: TypeLogl3(CA13)=0; 

Chckl 3 BRANCH,1: 
IF,CD13.LT.CA13,Shftl3: 
ELSE, Updtl3; 

Shftl3 ASSIGN: 
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TypeLogl 3(CD 13)=TypeLogl 3(CD 13+1): 
CD13=CD13+1: NEXT(Chckl3); 

Updtl3 ASSIGN: 
CA13=CA13-1: 
DurationTl 3=DurationTl 3-Duration: 
TimeLogl3=TNOW; 

PunOutl ASSIGN: Timeout=TNOW; 

BRANCH, 1: 
IF,VehType=l ,TrkD 1: 
ELSE,AUDI; 

TrkDl COUNT: DepTrkl; 
AUDI COUNT: DepAlll; 

;Acciimulate the Time Each Vehicle Spends in the system. 

ASSIGN: 
TimeInT(VehType)=TimeInT(VehType)-TimeInl: lUpdating TimelnTQ 
AvgStop(V ehT ype)=AvgStop(VehT ype)+(TNO W-TimeIn 1); 

TALLY: VehType, INT(StopDel): 
DISPOSE; 

;Phase 2 - West Bound 

CREATE; 

ReadNx2 READ, F12,FREE: ArrTime,VehType,VehDir; 

ASSIGN: InterArr=ArrTime-TNOW; 

ASSIGN: V2=V2+1; 

BRANCH, 1: 
IF,V2=l,OK2: 
ELSE, Chk2; 

Chk2 ASSIGN: Headway=(Clearance(VehType)+VehLen(LeadVeh))/Spd; 
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BRANCH,!: 
IF, InterArr.LT.Headway, Shift2: 
ELSE, 0K2; 

Shift2 ASSIGN: InterArr=Headway; 

0K2 ASSIGN: LeadVeh=VehType; 

DELAY: InterArr; 

Duplicate: l,ReadNx2; 

BRANCH, 1: 
IF,(VehDir==l.AND.NQ(ReaderTR2Q).LE.NQ(ReaderTL2Q)).OR. 

VehDir=2,RR2: 
ELSE, LL2; 

RR2 ASSIGN: 
V22=V22+1: 
Direction=2; 

BRANCH,!: 
IF,V22==!,IA22: 
ELSE, TV22; 

TV22 BRANCH,!: 
IF,ArrTime.LT.(OAT22+TravTime),TT22: 
ELSE, IA22; 

TT22 ASSIGN: TravTime=ArrTime-OAT22; 

IA22 ASSIGN: 
OAT22=ArrTime: 
TVA22=TVA22+1: 
TypArLog22(TVA22)=VehType: 
ArrLog22(TVA22)=ArrTime; 

QUEUE, ReaderTRZQ; 
SEIZE: ReaderTR2; 
DELAY: TravTime; 
RELEASE: ReaderTR2; 
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ASSIGN: TVD22=2; 

BRANCH,!: 
IF,TVA22=2,Fre22: 
ELSE, C!iklc22; 

Fre22 ASSIGN: 
TypArLog22(TVA22)=0: 
ArrLog22(TVA22)=0; 

Chkk22 BRANCH,!: 
IF,TVD22.LT.TVA22,Shf22: 
ELSE, Upt22; 

Shf22 ASSIGN: 
TypArLog22(TVD22)=TypArLog22(TVD22+l): 
ArrLog22(TVD22)=ArrLog22(TVD22+!): 
TVD22=TVD22+!: NEXT(C!ildc22); 

Upt22 ASSIGN: TVA22=TVA22-1: NEXT(Dcli2); 

LL2 ASSIGN: 
V23=V23+1: 
Direction=3; 

BRANCH,!: 
IF,V23=1,IA23: 
ELSE, TV23; 

TV23 BRANCH,!: 
IF,ArrTime.LT.(OAT23+TravTime),TT23: 
ELSE, IA23; 

TT23 ASSIGN: TravTime=ArrTime-OAT23; 

IA23 ASSIGN: 
OAT23=ArrTime: 
TVA23=TVA23+1: 
T yp ArLog23 (TV A23 )=V ehT ype: 
ArrLog23(TVA23)=ArrTime; 
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QUEUE, ReaderTL2Q; 
SEIZE: ReaderTL2; 
DELAY: TravTime; 
RELEASE: ReaderTL2; 

ASSIGN: TVD23=2; 

BRANCH, 1: 
IF,TVA23==2,Fre23: 
ELSE, Chkk23; 

Fre23 ASSIGN; 
TypArLog23(TVA23)=0: 
ArrLog23(TVA23)=0; 

Chkk23 BRANCH, 1; 
IF,TVD23.LT.TVA23,Shf23: 
ELSE,Upt23; 

Shf23 ASSIGN; 
TypArLog23(TVD23)=TypArLog23(TVD23+l): 
ArrLog23(TVD23)=ArrLog23(TVD23+l): 
TVD23=TVD23+1: NEXT(Chkk23); 

Upt23 ASSIGN: TVA23=TVA23-1; 

Dch2 BRANCH,!: 
IF,(NR(PhaseTR2)=0.AND.NQ(PhaseTR2Q)==0.AND. 

Direction=2).OR. 
(NR(PhaseTL2)=0.AND.NQ(PhaseTL2Q)==0.AND. 
Direction=3),NoDel2: 

ELSE,Del2; 

NoDel2 ASSIGN: Duration=0: NEXT(Dup2); 

DeI2 ASSIGN; Duration=Discharge(VehType); 

Dup2 ASSIGN: StopDel=TNOW; 

;Count Trucks and All Vehicles 

BRANCH,1: 
IF, V ehT ype==3 ,T rk2: 
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ELSE,A112; 

Trk2 COUNT: ArrTrk2; 
A112 COUNT: ArrA112; 

ASSIGN: 
TimeIn2=TN0W: 
TimeInT (VehType)=TimeInT (V ehT ype)+TimeIn2; 

BRANCH,!: 
IF,Direction=2,R2: 
IF,Direction=3 ,L2; 

L2 ASSIGN: 
CA23=CA23+1: 
TypeLog23(CA23)=VehType: 
DurationT23=DurationT23+Duration: NEXT(TrL2); 

R2 ASSIGN: 
CA22=CA22+1: 
TypeLog22(CA22)=VehType: 
DurationT22=DurationT22+Duration; 

COUNT: Arr22; 

QUEUE, PhaseTR2Q; 
SEIZE: PhaseTR2; 
DELAY: Duration; 
RELEASE: PhaseTR2; 

COUNT: Dep22; 

ASSIGN: CD22=2; 

BRANCH,!: 
IF,CA22=2,Free22: 
ELSE, Chck22; 

Free22 ASSIGN: TypeLog22(CA22)=0; 

Chck22 BRANCH,!: 
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IF,CD22.LT.CA22,Shft22: 
ELSE, Updt22; 

Shft22 ASSIGN: 
TypeLog22(CD22)=TypeLog22(CD22-i-l): 
CD22=CD22+1: NEXT(Chck22); 

Updt22 ASSIGN: 
CA22=CA22-I: 
DurationT22=DtirationT22-Duration: 
TimeLog22=TNOW: NEXT(PunOut2); 

TrL2 COUNT: Arr23; 

QUEUE, PhaseTL2Q; 
SEIZE: PhaseTL2; 
DELAY: Duration; 
RELEASE: PhaseTL2; 

COUNT: Dep23; 

ASSIGN: CD23=2; 

BRANCH,!: 
IF,CA23=2,Free23: 
ELSE,Chck23; 

Free23 ASSIGN: TypeLog23(CA23)=0; 

Chck23 BRANCH,!: 
IF,CD23.LT.CA23,Shft23: 

ELSE, Updt23; 

S!ift23 ASSIGN: 
TypeLog23(CD23)=TypeLog23(CD23+l): 
CD23=CD23+!: NEXT(Chck23); 

Updt23 ASSIGN: 
CA23=CA23-1: 
DurationT23=DurationT23-Duration: 
TimeLog23=TNOW; 
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PunOut2 ASSIGN: Timeout=TNOW; 

BRANCH,1; 
IF,VehType==3,TrkD2: 
ELSE,A11D2; 

TrkD2 COUNT; DepTrk2; 
A11D2 COUNT: DepA112; 

ASSIGN: 
TimeInT (VehT ype)=TinieInT (V ehT ype)-TimeIn2: 
AvgStop(VehType)=AvgStop(VehType)+(TNOW-TimeIn2); 

TALLY: VehType, INT(StopDel): 
DISPOSE; 

;Phase 3 - South Bound 

CREATE; 

ReadNx3 READ, F13,FREE: ArrTime,VehType,VehDir; 

ASSIGN: InterArr=AiTTime-TNOW; 

ASSIGN: V3=V3+1; 

BRANCH,!: 
IF,V3=l,OK3: 
ELSE, Chk3; 

Chk3 ASSIGN: Headway=(Clearance(VehType)+VehLen(LeadVeh))/Spd; 

BRANCH,!: 
IF, InterArr.LT.Headway, Shift3: 
ELSE, 0K3; 

Shift3 ASSIGN: InterArr=Headway; 

0K3 ASSIGN: LeadVeh=VehType; 

DELAY: InterArr; 
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Duplicate: l,ReadNx3; 

BRANCH, 1: 
IF,(VehDir=l.AND.NQ(ReaderTR3Q).LE.NQ(ReaderTL3Q)).OR. 

VehDir=2,RR3: 
ELSE, LL3; 

RR3 ASSIGN: 
V32=V32+1: 
Direction=2; 

BRANCH,!: 
IF,V32=1,IA32: 
ELSE, TV32; 

TV32 BRANCH,!: 
IF,ArrTime.LT.(OAT32+TravTime),TT32: 
ELSE, IA32; 

TT32 ASSIGN: TravTime=ArrTime-OAT32; 

IA32 ASSIGN: 
OAT32=ArrTime: 
TVA32=TVA32+1: 
TypArLog32(TVA32)=VehType: 
AiTLog32(TVA32)=ArrTime; 

QUEUE, ReaderTR3Q; 
SEIZE: ReaderTR3; 
DELAY: TravTime; 
RELEASE: ReaderTR3; 

ASSIGN: TVD32=2; 

BRANCH,!: 
IF,TVA32==2,Fre32: 
ELSE, Chkk32; 

Fre32 ASSIGN: 
TypArLog32(TVA32)=0: 
ArrLog32(TVA32)=0; 
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Chkk32 BRANCH,!: 
IF,TVD32.LT.TVA32,ShD2: 
ELSE, Upt32; 

Shf32 ASSIGN: 
TypArLog32(TVD32)=TypArLog32(TVD32+l): 
ArrLog32(TVD32)=ArrLog32(TVD32+l): 
TVD32=TVD32+1: NEXT(Chkk32); 

Upt32 ASSIGN: TVA32=TVA32-1: NEXT(Dch3); 

LL3 ASSIGN: 
V33=V33+1: 
Direction=3; 

BRANCH,!: 
IF,V33=!,IA33: 
ELSE, TV33; 

TV33 BRANCH,!: 
IF,ArrTime.LT.(OAT33+TravTime),TT33: 
ELSE, IA33; 

TT33 ASSIGN: TravTime=ArrTime-OAT33; 

I A3 3 ASSIGN: 
OAT33=ArrTime: 
TVA33=TVA33+!: 
TypArLog33(TVA33)=VehType: 
ArrLog33(TVA33)=ArrTime; 

QUEUE, ReaderTL3Q; 
SEIZE: ReaderTL3; 
DELAY: TravTime; 
RELEASE: ReaderTL3; 

ASSIGN: TVD33=2; 

BRANCH,!: 
IF,TVA33=2,Fre33: 
ELSE, Chlck33; 
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Fre33 ASSIGN: 
TypArLog33(TVA33)=0: 
ArrLog33(TVA33)=0; 

Chkk33 BRANCH,!: 
IF,TVD33.LT.TVA33,Shf33: 
ELSE, Upt33; 

Shf33 ASSIGN: 
TypArLog33(TVD33)=TypArLog33(TVD33+l): 
ArrLog33(TVD33)=ArrLog33(TVD33+l): 
TVD33=TVD33+1: NEXT(Chkk33); 

Upt33 ASSIGN: TVA33=TVA33-1; 

Dch3 BRANCH,!: 
IF,(NR(PhaseTR3)=O.AND.NQ(PhaseTR3Q)==O.AND. 

Direction==2).OR. 
(NR(PhaseTL3)==0.AND.NQ(PhaseTL3Q)=0.AND. 
Direction=3),NoDel3: 

ELSE,Del3; 

NoDel3 ASSIGN: Diiration=0: NEXT(Dup3); 

Del3 ASSIGN: Duration=Discharge(VehType); 

Dup3 ASSIGN: StopDel=TNOW; 

;Count Trucks and All Vehicles 

BRANCH,!: 
IF,VehType=5,Trk3: 
ELSE,A113; 

Trk3 COUNT: ArrTrk3; 
A113 COUNT: ArrA113; 

ASSIGN: 
TimeIn3=TN0W: 
TimeInT(VehType)=TimeInT(VehType)+TimeIn3; 

BRANCH,!: 
IF,Direction—2 ,R3: 
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IF,Direction=3 ,L3; 

L3 ASSIGN: 
CA33=CA33+1: 
TypeLog33(CA33)=VehType: 
DurationT33=DurationT33+Duratioii: NEXT(TrL3); 

R3 ASSIGN: 
CA32=CA32+1: 
TypeLog32(CA32)=VehType: 
DurationT32=DurationT32+Duration; 

COUNT: Arr32; 

QUEUE, PhaseTR3Q; 
SEIZE: PhaseTR3; 
DELAY: Duration; 
RELEASE; PhaseTR3; 

COUNT: Dep32; 

ASSIGN: CD32=2; 

BRANCH,!: 
IF,CA32==2,Free32: 
ELSE, Chck32; 

Free32 ASSIGN: TypeLog32(CA32)=0; 

Chck32 BRANCH,!: 
IF,CD32.LT.CA32,Shft32: 
ELSE, Updt32; 

Shft32 ASSIGN: 
TypeLog32(CD32)=TypeLog32(CD32+l): 
CD32=CD32+1: NEXT(C!ick32); 

Updt32 ASSIGN: 
CA32=CA32-1: 
DurationT32=DurationT32-Duration: 
TimeLog32=TNOW: NEXT(PunOut3); 
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TrL3 COUNT: Arr33; 

QUEUE, PhaseTL3Q; 
SEIZE: PhaseTL3; 
DELAY: Duration; 
RELEASE: PhaseTL3; 

COUNT: Dep33; 

ASSIGN: CD33=2; 

BRANCH,!: 
IF,CA33==2,Free33: 
ELSE, Chck33; 

Free33 ASSIGN: TypeLog33(CA33)=0; 

Chck33 BRANCH,!: 
IF,CD33.LT.CA33,Shft33: 
ELSE, Updt33; 

Shft33 ASSIGN: 
TypeLog33(CD33)=TypeLog33(CD33+!): 
CD33=CD33+!: NEXT(Chck33); 

Updt33 ASSIGN: CA33=CA33-!: 
DurationT33 =DurationT3 3 -Duration: 
TimeLog33=TNOW; 

PunOut3 ASSIGN: Timeout=TNOW; 

BRANCH,!: 
IF,VehType=5,TrkD3: 
ELSE,A11D3; 

TrkD3 COUNT: DepTrk3; 
A1ID3 COUNT: DepA113; 

ASSIGN: 
TimeInT (V eliType)=TinieInT (V ehT ype)-TimeIn3: 
AvgStop(Ve!iType)=AvgStop(VehType)+(TNOW-TimeIn3); 
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TALLY: VehType, INT(StopDel): 
DISPOSE; 

;Phase 4 - East Bound 

CREATE; 

ReadNx4 READ, F14,FREE: ArrTime,VehType,VehDir; 

ASSIGN: InterArr=ArrTime-TNOW; 

ASSIGN: V4=V4+1; 

BRANCH,!: 
IF,V4=l,OK4: 
ELSE, Chk4; 

Chk4 ASSIGN: Headway=(Clearance(VehType)+VehLen(LeadVeh))/Spd; 

BRANCH,!: 
IF, InterArr.LT.Headway, Shift4: 
ELSE, 0K4; 

S!iift4 ASSIGN: InterArr=Headway; 

0K4 ASSIGN: LeadVeh=VehType; 

DELAY: InterAir; 

Duplicate: !,ReadNx4; 

BRANCH,!: 
IF,(VeliDir=l.AND.NQ(ReaderTR4Q).LE.NQ(ReaderTL4Q)).OR. 

VeliDir==2,RR4: 
ELSE, LL4; 

RR4 ASSIGN: 
V42=V42+!: 
Direction=2; 

BRANCH,!: 
IF,V42=1,IA42: 
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ELSE, TV42; 

TV42 BRANCH,!: 
IF,ArrTime.LT.(OAT42+TravTime),TT42: 
ELSE, IA42; 

TT42 ASSIGN: TravTime=ArrTime-OAT42; 

IA42 ASSIGN: 
OAT42=ArrTiine: 
TVA42=TVA42+1: 
T yp ArLog42(T V A42)=V ehT y pe: 
ArrLog42(TVA42)=ArrTime; 

QUEUE, ReaderTR4Q; 
SEIZE; ReaderTR4; 
DELAY: TravTime; 
RELEASE: ReaderTR4; 

ASSIGN: TVD42=2; 

BRANCH, 1: 
IF,TVA42==2,Fre42: 
ELSE, Chkk42; 

Fre42 ASSIGN: 
T yp ArLog42(T V A42)=0: 
ArrLog42(TVA42)=0; 

Chkk42 BRANCH,!: 
IF,TVD42.LT.TVA42,Shf42: 
ELSE, Upt42; 

Shf42 ASSIGN: 
TypArLog42(TVD42)=TypArLog42(TVD42+l): 
ArrLog42(TVD42)=ArrLog42(TVD42+l): 
TVD42=TVD42+!: NEXT(Chlck42); 

Upt42 ASSIGN: TVA42=TVA42-!: NEXT(Dch4); 

LL4 ASSIGN: 
V43=V43+!: 
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Direction=3; 

BRANCH,!: 
IF,V43=1,IA43: 
ELSE,TV43; 

TV43 BRANCH,!: 
IF,ArrTime.LT.(OAT43+TravTime),TT43: 
ELSE, IA43; 

TT43 ASSIGN: TravTime=ArrTime-OAT43; 

IA43 ASSIGN: 
OAT43=ArrTime: 
TVA43=TVA43+!: 
TypArLog43 (TV A43)=V ehType: 
ArrLog43(TVA43)=ArrTime; 

QUEUE, ReaderTL4Q; 
SEIZE: ReaderTL4; 
DELAY: TravTime; 
RELEASE: ReaderTL4; 

ASSIGN: TVD43=2; 

BRANCH,!: 
IF,TVA43=2,Fre43: 
ELSE, Chkl{43; 

Fre43 ASSIGN: 
TypArLog43(TVA43)=0: 
ArrLog43(TVA43)=0; 

Chkk43 BRANCH,!: 
IF,TVD43.LT.TVA43,S!if43: 
ELSE,Upt43; 

S!if43 ASSIGN: 
TypArLog43(TVD43)=TypArLog43(TVD43+l): 
ArrLog43(TVD43)=ArrLog43(TVD43+!): 
TVD43=TVD43+1: NEXT(Chkk43); 
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Upt43 ASSIGN: TVA43=TVA43-1; 

Dch4 BRANCH,!: 
IF,(NR(PhaseTR4)=0.AND.NQ(PhaseTR4Q)=0.AND. 
Direction==2).OR. 
(NR(PhaseTL4)==0.AND.NQ(PhaseTL4Q)=0.AND. 
Direction—3),NoDel4: 
ELSE,Del4; 

NoDeW ASSIGN: Duration=0: NEXT(Dup4); 

Del4 ASSIGN: Duration=Discharge(VehType); 

Dup4 ASSIGN: StopDel=TNOW; 

;Count Trucks and All Vehicles 

BRANCH,!: 
IF,VehType=7,Trk4: 
ELSE,A114; 

Trk4 COUNT: ArrTrk4; 
A114 COUNT: ArrAlW; 

ASSIGN: 
TimeIn4=TN0W: 
TimeInT (V ehT ype)=TimeInT (V ehT ype)+TimeIn4; 

BRANCH,!: 
IF,Direction=2,R4: 
IF,Djrection=3,L4; 

L4 ASSIGN: 
CA43=CA43+1: 
Ty peLog43 (C A43 )=V ehT y pe: 
DurationT43=DurationT43+Duration: NEXT(TrL4); 

R4 ASSIGN: 
CA42=CA42+1: 
T ypeLog42(C A42)=V ehT ype: 
DiirationT42=DurationT42+Duration; 
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COUNT: Arr42; 

QUEUE, PhaseTR4Q; 
SEIZE: PhaseTR4; 
DELAY: Duration; 
RELEASE: PhaseTR4; 

COUNT: Dep42; 

ASSIGN: CD42=2; 

BRANCH,!: 
IF,CA42==2,Free42: 
ELSE, Chck42; 

Free42 ASSIGN: TypeLog42(CA42)=0; 

Click42 BRANCH,!: 
IF,CD42.LT.CA42,Shft42: 
ELSE, Updt42; 

Shft42 ASSIGN: 
TypeLog42(CD42)=TypeLog42(CD42+l): 
CD42=CD42+1: NEXT(Chck42); 

Updt42 ASSIGN: 
CA42=CA42-1: 
DurationT42=DurationT42-Duration: 
TimeLog42=TNOW: NEXT(PunOut4); 

TrL4 COUNT: Arr43; 

QUEUE, PhaseTL4Q; 
SEIZE: PhaseTL4; 
DELAY: Duration; 
RELEASE: PhaseTL4; 

COUNT: Dep43; 

ASSIGN: CD43=2; 

BRANCH,!: 
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IF,CA43=2,Free43: 
ELSE, Chck43; 

Free43 ASSIGN: TypeLog43(CA43)=0; 

Chck43 BRANCH,!: 
IF,CD43.LT.CA43,Shft43; 
ELSE, Updt43; 

Shft43 ASSIGN: 
TypeLog43(CD43)=TypeLog43(CD43+l): 
CD43=CD43+1: NEXT(Chck43); 

Updt43 ASSIGN: 
CA43=CA43-1: 
DurationT43=DurationT43-Duration: 
TimeLog43=TNOW; 

PunOut4 ASSIGN: Timeout=TNOW; 

BRANCH, 1: 
IF,VehType=7,TrkD4: 
ELSE,A11D4; 

TrkD4 COUNT: DepTrk4; 
A11D4 COUNT: DepAIW; 

ASSIGN: 
TimeInT (V ehT ype)=TimeInT (VehT ype)-TimeIn4: 
AvgStop(V ehT ype)=AvgStop(V ehT ype)+(TN 0 W-Timeln4); 

TALLY: VehType, INT(StopDel): 
DISPOSE; 

END; 
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Simulation Model - EXPERIMENT 

Lincoln Way and Duff Avenue Intersection 

BEGIN; 

PROJECT, 4_Phase Intersection,Ali; 

VARIABLES: 
Option,0: !If 0, AVSI is engaged 
PARTII,2: !If 2, PARTII is engaged 

Truck%l,.30: 
Truck%2,.30: 
Truck%3,.30: 
Truck%4,.30: 

ActFlowl,600: 
ActFIow2,600: 
ActFIow3,600: 
ActFlow4,600: 

V/(2),.75,.25: 
DIValue,15: 

Periodl,299.999: 
Period2,299.995: 
Period3,299.9999: 

Period4,7199: 

Decel,10: 
MaxGX,10: 
MaxSat,!: 
R2b,20: 

LostTinie,8: 
Xc,l: 
Multi: 
Adj: 
SatFlowl: SatFlow2: SatFlow3: SatFlow4: 
CycleLength: Greenl: Green2: Green3: Green4: 
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ActCl: 
VoverSl: VoverS2: VoverS3; VoverS4: 
NewCycle: 
NewGl: NewG2: NewG3: NewG4: 

Spd,44: 
V I :  V 2 :  V 3 :  V 4 :  

Discharge(8),3,2,3,2,3,2,3,2: 
Discharge(8),4,2,4,2,4,2,4,2: 

Clearance(8),15,10,15,10,15,10,15,10: 
VehLen(8),60,15,60,15,60,15,60,15: 

TypeLog 12(50): TimeLogl2: 
TypeLogl3(50): TiineLogl3: 
TypeLog22(50): TimeLog22: 
TypeLog23(50): TimeLog23: 
TypeLog32(50): TimeLog32: 
TypeLog33(50): TimeLog33: 
TypeLog42(50): TimeLog42: 
TypeLog43(50): TimeLog43: 

CA12,1:CD12: 
CA13,1:CD13: 
CA22,1: CD22: 
CA23,1:CD23: 
CA32,1:CD32: 
CA33,1:CD33: 
CA42,1:CD42: 
CA43,1:CD43: 

V12:Y13 
V22: V23 
V32: V33 
V42: V43 

0AT12: 0AT13 
OAT22: OAT23 
OAT32: OAT33 
OAT42: OAT43 
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TVA12,1:TVD12; 
TVA13,1:TVD13: 
TVA22,1: TVD22: 
TVA23,1; TVD23: 
TVA32,1:TVD32: 
TVA33,1: TVD33: 
TVA42,1: TVD42: 
TVA43,1:TVD43: 

ArrLogl2(20): ArrLogl3(20): 
ArrLog22(20): ArrLog23(20): 
ArrLog32(20): ArrLog33(20): 
ArrLog42(20): ArrLog43(20): 

TypArLog 12(20): TypArLog 13 (20) 
TypArLog22(20): TypArLog23(20) 
TypArLog32(20): TypArLog33(20) 
TypArLog42(20): TypArLog43(20) 

JR2a,l: JL2a,l: 
JR2b,l: JL2b,l: 
TagL: TagR: 

DurationT12: DurationT13: 
DurationT22: DurationT23: 
DurationT32: DiirationT33: 
DurationT42: DurationT43: 

ExtraTime: 
DL-
TimeInT(8): 
AvgDeI(8): 
TimeNeed: 
TimeNeedT; 
BusyNum: 
AvgStop(8): AvgStopT(8): 
TT(4): 
ChkTime: 
Satur: 
QL: Prd: 
Tm: ChgTm: 0V(4): Q(4); 
K: CPh: 
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LapDel(8): 0LapDel(8): 
LapVol(8): 
Vol(8): OVol(8): 
IntDelay: 
TrkDelay: 
CarDelay: 
StartTime: 
ChangeTime: 

; X1:X2:X3:X4; 
; Capl: Cap2: Cap3: Cap4: 
; Delayl: Delay2: Delay3: Delay4: 
; WebDelay; 

TABLES: 
HV%,0,.05,1,.975,.95,.93,.91,.89,.87, 

.85,.83,.81,.79,.77,.75; 

ATTRIBUTES: 
TravTime,60: 
ArrTime: 
VehType: 
VehDir: 
Headway: 
LeadVeh: 
StopDel: 
InterArr: 
Duration: 
Timeout: 
Timelnl: Timeln2: Timeln3: Timeln4; 

QUEUES: 
PhaseTRlQ: PhaseTLlQ: 
PhaseTR2Q: PhaseTL2Q: 
PhaseTR3Q: PhaseTL3Q: 
PhaseTR4Q: PhaseTL4Q: 

ReaderTRlQ: ReaderTLlQ: 
ReaderTR2Q: ReaderTL2Q: 
ReaderTR3Q: ReaderTLSQ: 
ReaderTR4Q: ReaderTL4Q: 
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DumlQ: Dum2Q: DumSQ: Dum4Q: DumSQ; 

RESOURCES: 
PhaseTRl: PhaseTLl: 
PhaseTR2: PhaseTL2: 
PhaseTRS: PhaseTLS: 
PhaseTR4: PhaseTL4: 

ReaderTRl: ReaderTLl: 
ReaderTR2: ReaderTL2: 
ReaderTRS: ReaderTLS: 
ReaderTR4: ReaderTL4; 

COUNTERS: 
ArrTrkl: DepTrkl: 
ArrAlll: DepAlll: 
AiTTrk2: DepTrk2: 
ArrA112: DepA112: 
ArrTrkS: DepTrkS: 
ArrAllS: DepAllS: 
ArrTrk4: DepTrk4: 
ArrAIW: DepAlW: 

Arrl2: Depl2: 
AiTl3:Depl3: 
Arr22: Dep22: 
AIT23: Dep23: 
Arr32: Dep32: 
AiT33:Dep33: 
Arr42: Dep42: 
Arr43: Dep43; 

TALLIES: 
Truck Delay in Phase 1: 
Car Delay in Phase 1: 
Truck Delay in Phase 2: 
Car Delay in Phase 2: 
Truck Delay in Phase 3: 
Car Delay in Phase 3: 
Truck Delay in Phase 4: 
Car Delay in Phase 4; 
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DSTATS: 
NQ(PhaseTRlQ),Phase 1 Queue T_R: 
NQ(PhaseTLlQ),Phase 1 Queue T_L; 
NQ(PhaseTR2Q),Phase 2 Queue T_R: 
NQ(PhaseTL2Q),Phase 2 Queue T_L: 
NQ(PhaseTR3Q),Phase 3 Queue T_R: 
NQ(PhaseTL3Q),Phase 3 Queue T_L: 
NQ(PhaseTR4Q),Phase 4 Queue T_R: 
NQ(PhaseTL4Q),Phase 4 Queue T_L; 

FILES: 
Output,"o",SEQ,"(5(f7.2,1 x),4(f3.2,1 x),3(f5.2,1 x))'MGN: 
TypeFilel,"tfl",SEQ,"(3(f7.2,lx),8f7.2)MGN: 
TypeFile2,"tf2",SEQ,"(3(f7.2,lx),8f7.2)MGN: 
TypeFile3,"tf3",SEQ,"(3(f7.2,lx),8f7.2)MGN: 
TypeFile4,"tf4",SEQ,"(3(f7.2,lx),8f7.2)",IGN: 
Fll,"tll",SEQ,FRE,IGN: 
F12,"tl2",SEQ,FRE,IGN: 
F13,"tl3",SEQ,FRE,IGN: 
F14,"tl4",SEQ,FRE,IGN: 
F,"t",SEQ,FRE,IGN; 

REPLICATE, 1,0,7260; 
;REPLICATE, 1,0,3660; 

END; 
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APPENDIX III - PRE-GENERATOR PROGRAM LISTINGS 

Pre-Generator Model - MODEL 

Lincoln Way and Duff Avenue Intersection 

BEGIN; 

;Create vehicles—Phase 1 - North Bound 

CREATE,1,Off: EXPO(3600/vphl,l); 

ASSIGN: ArrTime=TNOW; 

;Vehicle Type Assignment 

ASSIGN: VehType=DISC(Truck%l, 1,1,2,2); 

;Vehicle Direction Assigninent~DirLl% left turn, DirRl% right turn, rest through. 

ASSIGN: VehDir=DISC(DirLl,3,DirRl,2,l,l,3); 

;Count Trucks and All Vehicles 

BRANCH, 1: 
IF,VehType=l,Trkl: 
ELSE,A111; 

Trkl COUNT: ArrTrkl; 
Alll COUNT: ArrAlll; 

WRITE, F11,FREE: ArrTime,VehType,VehDir: DISPOSE; 

;Create vehicles—Phase 2 - West Bound 

CREATE,l,Off: EXPO(3600/vph2,l); 

ASSIGN: ArrTime=TNOW; 

;Vehicle Type Assignment 

ASSIGN: VehType=DISC(Truck%2,3,l ,4,2); 
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;Vehicle Direction Assignment 

ASSIGN: VehDir=DISC(DirL2,3,DirR2,2,l,l,3); 

;Count Trucks and All Vehicles 

BRANCH, 1: 
IF,VehType=3,Trk2: 
ELSE,A112; 

Trk2 COUNT: ArrTrk2; 
A112 COUNT: ArrAI12; 

WRITE, F12,FREE: ArrTime,VehType,VehDir: DISPOSE; 

;Create vehicles—Phase 3 - South Bound 

CREATE,1,Off: EXPO(3600/vph3,l); 

ASSIGN: ArrTime=TNOW; 

;Vehicle Type Assignment 

ASSIGN: VehType=DISC(Truck%3,5,1,6,2); 

;Vehicle Direction Assignment 

ASSIGN: VehDir=DISC(DirL3,3,DirR3,2,l,l,3); 

;Count Trucks and All Vehicles 

BRANCH, 1: 
IF, V ehType==5 ,T rk3: 
ELSE,A113; 

Trk3 COUNT: ArrTrk3; 
A113 COUNT: ArrAlB; 

WRITE, F13,FREE: ArrTime,VehType,VehDir: DISPOSE; 

;Create vehicles—Phase 4 - East Bound 



www.manaraa.com

170 

CREATE,!,Off: EXPO(3600/vph4,l); 
ASSIGN: ArrTime=TNOW; 

;Vehicle Type Assignment 

ASSIGN: VehType=DISC(Truck%4,7,l,8,2); 

;Vehicle Direction Assignment 

ASSIGN: VehDir=DISC(DirL4,3,DirR4,2,1,1,3); 

;Count Trucks and All Vehicles 

BRANCH, 1: 
IF,VehType=7,Trk4: 
ELSE,A114; 

Trk4 COUNT: ArrTrk4; 
A114 COUNT: ArrAIM; 

WRITE, F14,FREE: ArrTime,VehType,VehDir: DISPOSE; 

;Record Traffic Flow Rates and Truck Percentages for Each Period 

CREATE; 
Rep DELAY: Period; 

ASSIGN: 
Vehperlntl =NC(ArrAlll )-CountVehl: 
CountV eh 1 =N C( Arr All 1): 
ActFlowl=VehperIntl*(3600/Period): 
TrkperIntl=NC(ArrTrkl )-CountTrkl: 
CountTrkl=NC(ArrTrkl): 
Truck% 1 =T rkperint 1 fV ehperint 1; 

ASSIGN: 
VehperInt2=NC(ArrA112)-CountVeh2: 
CountVeh2=NC(ArrA112): 
ActFlow2=V ehperlnt2* (3600/Period): 
T rkperInt2=NC(ArrT rk2)-CountT rk2: 
CountTrk2=NC(ArrTrk2): 
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Truck%2=TrkperInt2A^ ehperlnt2; 

ASSIGN: 
VehperInt3=NC(ArrAI13)-CountVeh3: 
CountVeh3=NC(ArrA113): 
ActFlow3=VehperInt3*(3600/Period): 
TrkperInt3=NC(ArrTrk3)-CountTrk3: 
CountTrk3=NC(ArrTrk3): 
Truck%3=TrkperInt3A^ehperInt3; 

ASSIGN: 
VehperInt4=NC(ArrA114)-CountVeh4: 
CountVeh4=NC(ArrA114): 
ActFlow4=VehperInt4* (3600/Period): 
T rkperInt4=NC( ArrTrk4)-CountT rk4: 
CountTrk4=NC(ArrTrk4): 
Truck%4=TrkperInt4A^ ehperlnt4; 

WRITE, F,FREE: ActFlowl,ActFlow2,ActFIow3,ActFlow4, 
Truck% 1 ,Truck%2,Truck%3,Truck%4; 

BRANCH, 1: 
; IF,TNOW.GT.Periodl,Wrap: 

Else,Rep; 

Wrap WRITE, F,FREE: vphl,vph2,vph3,vph4; 

; WRITE, F11,FREE: 3600+61,2; 
; WRITE, F12,FREE: 3600+61,4; 
; WRITE, F13,FREE: 3600+61,6; 
; WRITE, F14,FREE: 3600+61,8: DISPOSE; 

WRITE, F11,FREE: 7200+1,2; 
WRITE, F12,FREE: 7200+1,4; 
WRITE, F13,FREE: 7200+1,6; 
WRITE, F14,FREE: 7200+1,8: DISPOSE; 

END; 
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Pre-Generator Model - EXPERIMENT 

Lincoln Way and Duff Avenue Intersection 

BEGIN; 

PROJECT, 4_phase Intersection,Ali; 

ATTRIBUTES: 
vphl,600: 
vph2,600: 
vph3,600: 
vph4,600: 

Period,300: 
; Period,3600: 

Truck%l,.30: 
Truck%2,.30: 
Truck%3,.30: 
Truck%4,.30: 

DirLl,.30: DirRl,.45 
DirL2,.30: DirR2,.45 
DirL3,.30: DirR3,.45 
DirL4,.30: DirR4,.45 

Used in Validation of Results 

vph 1,665: 
vph2,633: 
vph3,665: 
vph4,630: 
Truck%l,.009: 
Truck%2,.008: 
Truck%3,.015: 
Truck%4,.029: 
DirLl,.296: DirRl,.409 
DirL2,.313: DirR2,.572 
DirL3,.202: DirR3,.331 
DirL4,.363: DirR4,.522 
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0ff,0: 
VehDir: 
ArrTime: 
VehType: 
Periodl,7199: 

ActFlowl: ActFlow2: ActFlow3; ActFIow4: 
Vehperlntl: Vehperlnt2: Vehperlnt3: Vehperlnt4: 
Trkperlntl: Trkperlnt2: Trkperlnt3: Trkperlnt4: 
CountVehl: CountVeh2: CountVeh3: CountVeh4: 
CountTrkl: CountTrk2: CountTrk3: CountTrk4; 

COUNTERS: 
ArrTrkl: ArrAlll: 
ArrTrk2: ArrA112: 
ArrTrk3: ArrA113: 
ArrTrk4: ArrAlW; 

FILES: 
Fll,"tll",SEQ,FRE: 
F12,"tl2",SEQ,FRE: 
F13,"tl3",SEQ,FRE: 
F14,"tl4",SEQ,FRE: 
F,"t",SEQ,FRE; 

REPLICATE, 1,0,7260; 
;REPLICATE, 1,0,3660; 

END; 
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APPENDIX IV - DELAY STUDY WORKSHEETS 

Intersection Delay Worksheet 

Number of Stopped Vehicles 

Sec. 
Min. 

0 20 40 

00:01 

00:02 

00:03 

00:04 

00:05 

00:06 

00:07 

00:08 

00:09 

00:10 

00:11 

00:12 

00:13 

00:14 

00:15 

00:16 

00:17 

00:18 

00:19 

00:20 

Totals 

Volume, V = 
Pi I SKvxv Delay =-y- = 
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Traffic Volume Counts Field Sheet 

Intersection : Lincoln Way and Duff Avenue 

Date: Wednesday 10/26/94 

Time: 4:30-5:30 PM 

North Bound Approach 

END TIME 

(minute) 

RIGHT THROUGH LEFT END TIME 

(minute) Car Tnack Car Truck Car Truck 

00:05 

00:10 

00:15 

00:20 

00:25 

00:30 

00:35 

00:40 

00:45 

00:50 

00:55 

01:00 
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